Министерство науки и высшего образования Российской Федерации Чайковский филиал

федерального государственного автономного образовательного учреждения высшего образования

Пермский национальный исследовательский политехнический университет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Физика	
	(наименование)	
Форма обучения:	очно-заочная	
	(очная/очно-заочная/заочная)	
Уровень высшего образования:	бакалавриат	
	(бакалавриат/специалитет/магистратура)	
Общая трудоёмкость:	144 (4)	
	(часы (3Е))	
Направление подготовки:	38.03.01 Экономика	
	(код и наименование направления)	
Направленность: Экономин	са предприятий и организаций	
(наименование об	разовательной программы)	

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины — изучить физические явления и законы физики, границы их применимости, применение законов в важнейших практических приложениях; приобрести навыки работы с приборами и оборудованием современной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

Задачи учебной дисциплины:

знать:

- основные физические явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности, области и возможности применения физических эффектов;
- фундаментальные понятия, законы и теории классической и современной физики, границы применимости основных физических моделей;
- основные физические величины и константы, их определения и единицы измерения;
- методы решения физических задач, важных для технических приложений;
- технологии работы с различными видами информации;

уметь:

- выделять физическое содержание в системах и устройствах различной физической природы;
- решать типовые задачи по основным разделам физики;

владеть:

- методами анализа физических явлений в технических устройствах и системах;
- навыками практического применения законов физики, в том числе при проектировании изделий и процессов;
- методами теоретического исследования физических явлений и процессов, построения математических и физических моделей реальных систем, решения физических задач;
- навыками применения знаний в области физики для изучения других дисциплин.

1.2. Изучаемые объекты дисциплины

- физические явления и процессы в природе и техногенных системах;
- физические законы, описывающие эти явления и процессы;
- приборы для исследования физических систем;
- методы исследования физических систем;
- методы формализованного описания физических систем, в том числе средствами математического и компьютерного моделирования.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Планируемые результаты Индикатор достижения компетенции, с обучения по дисциплине (знать, уметь, владеть) Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения		Средства оценки	
УК-1.	ИД-1 ук-1.	Собеседование,	
Способен осуществлять	Знает, как осуществлять поиск,	тестовые вопросы для	
поиск, критический анализ	критический анализ и синтез	рубежного контроля,	
и синтез информации,	информации для решения поставленных	индивидуальные	
применять системный	профессиональных задач.	задания, защиты	
подход для решения	ИД-2 ук-1.	практических работ,	

поставленных задач	Умеет применять системный подход на	экзамен
	основе поиска, критического анализа и	
	синтеза информации для решения	
	научно-технических задач	
	профессиональной области.	
	ИД-3 ук-1.	
	Владеет навыками поиска, синтеза и	
	критического анализа информации в	
	своей профессиональной области;	
	владеет системным подходом для	
	решения поставленных задач.	

3. Объём и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 1
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	26	26
- лекции (Л)	8	8
- лабораторные работы (ЛР)	-	-
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	16	16
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа	-	-
1.2. Самостоятельная работа студентов (СРС)	82	82
2. Промежуточная аттестация/контактная работа	36	36
Экзамен/контактная работа	36	36
Дифференцированный зачет	-	-
Зачёт	-	-
Курсовой проект (КП)	-	-
Курсовая работа (КР)	-	-
Общая трудоемкость дисциплины	144	144

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		м аудитс занятий зидам в ч	-	Объём внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
1-й семестр				
Тема 1: Кинематика поступательного и	1	0	2	8
вращательного механического движения (Основные кинематические характеристики прямолинейного и криволинейного движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейными скоростью				

Наименование разделов дисциплины с кратким содержанием	Объём аудиторных занятий по видам в часах		Объём внеаудиторных занятий по видам в часах	
и ускорением. Прямая и обратная задачи кинематики. Законы равномерного и				
равнопеременного движения.)				
Тема 2: Динамика поступательного и	2	0	2	16
вращательного механического движения				
(Инерциальные системы отсчёта и первый закон				
Ньютона. Второй закон Ньютона. Масса, импульс,				
сила. Третий закон Ньютона и закон сохранения				
импульса. Закон всемирного тяготения. Силы				
упругости и трения. Момент импульса				
материальной точки и механической системы.				
Момент силы. Уравнение моментов. Закон				
сохранения момента импульса механической				
системы. Основной закон динамики вращательного				
движения твёрдого тела с закрепленной осью				
вращения. Момент импульса тела. Момент инерции.				
Теорема Штейнера.)				0
Тема 3. Работа. Энергия. (Сила, работа и	1	0	2	8
потенциальная энергия. Консервативные и				
неконсервативные силы. Работа и кинетическая				
энергия при поступательном и вращательном				
движении. Закон сохранения полной механической				
энергии в поле потенциальных сил.)	2	0	4	1.6
Тема 4: Механика и термодинамика жидкости и газа (Параметры состояния идеального газа.	2	0	4	16
Равнораспределение энергии молекулы по степеням				
свободы. Уравнение состояния идеального газа.				
Законы для изопроцессов. Реальные газы. Уравнение Ван-дер-Ваальса.				
Термодинамическое равновесие и температура.				
Нулевое начало термодинамики. Эмпирическая				
температурная шкала. Уравнение состояния в				
термодинамике. Обратимые и необратимые				
процессы. Энергия одной молекулы, внутренняя				
энергия идеального газа. Первое начало				
термодинамики. Теплоёмкость. Уравнение Майера.				
Изохорический, изобарический, изотермический,				
адиабатический процессы в идеальных газах. Преоб-				
разование теплоты в механическую работу. Цикл				
Карно и КПД. Энтропия. Второе начало				
термодинамики. Явления переноса. Диффузия,				
теплопроводность, внутреннее трение. Броуновское				
движение.)				

Наименование разделов дисциплины с кратким содержанием	Объём аудиторных занятий по видам в часах		Объём внеаудиторных занятий по видам в часах	
Тема 5: Кинематика и динамика механических	2	0	4	24
колебаний и волн (Амплитуда, частота и фаза колебаний. Закон гармонических колебаний;				
векторная диаграмма. Сложение колебаний (биения,				
фигуры Лиссажу. Идеальный гармонический				
осциллятор. Квазиупругая сила. Уравнение				
идеального осциллятора. Маятники. Превращения				
энергии при колебаниях. Свободные затухающие				
колебания осциллятора с потерями. Вынужденные				
колебания. Резонанс. Волновое движение. Плоская гармоническая волна. Длина волны, волновое число,				
фазовая скорость. Уравнение волны. Упругие				
волны. Интерференция волн. Стоячие волны.)				
Тема 6: Геометрическая, волновая, квантовая	0	0	2	10
оптика (Законы геометрической оптики.				
Интерференция. Дифракция. Поляризация.				
Дисперсия света. Спектральные характеристики				
теплового излучения)				
ИТОГО по 1-му семестру	8	0	16	82
ИТОГО по дисциплине	8	0	16	82

Тематика примерных практических занятий

No	Наименование темы практического (семинарского) занятия
п.п.	
	1 семестр
1	Кинематика и динамика поступательного движения
2	Кинематика и динамика вращательного движения
3	Работа. Энергия. Законы сохранения в механике
4	Колебательные и волновые движения
5	Уравнения МКТ. Законы термодинамики
6	Законы оптики

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
	Не предусмотрены

Тематика примерных курсовых проектов/работ

№ п.п.	Наименование темы курсовых проектов/работ
	Не предусмотрены

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Дисциплина базируется на модульной технологии обучения.

В процессе изучения дисциплины наряду с традиционными используются инновационные технологии, охватывающие все виды и формы обучения: лекции, практические работы, самостоятельную работу, контроль.

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установления связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем; отработка у обучающихся навыков взаимодействия в составе коллектива; закрепление основ теоретических знаний. Используется форма проблемного обучения – совместное обучение – преподаватель ставит проблему, а решение достигается совместно со студентами.

Технологии организации самостоятельной работы основываются на использовании интернет-ресурсов (справочные пособия, практикумы, лекции-презентации, методические разработки, учебная и научная литература).

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчётов по практическим занятиям, индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задаётся на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке
	1. Основная литература	
1	Бондарев, Б.В. Курс общей физики: в 3кн.: учебник для бакалавров / Б.В. Бондарев, Г.Г. Спирин.—2-е изд.—М.: Издательство Юрайт,2013,2016	5
2	Трофимова, Т.И. Курс физики: учеб. пособие/ Т.И. Трофимова.—20-е изд., стер. — М.: Академия, 2014. — 560с.	5
3	Савельев И.В. Курс общей физики: учебник в 3-х т. Т.1 Механика. Молекулярная физика / И.В. Савельев.— 12-е изд., стер.— СПб: Изд-во « Лань», 2016.—432с.	7
4	Савельев, И.В. Курс общей физики: учебное пособие в 3-х томах / И.В.	4

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке			
	Савельев. – 5-е изд. – СПб: Лань,2018				
	2. Дополнительная литература				
	2.1. Учебные и научные издания				
1	Трофимова, Т.И. Руководство к решению задач по физике: учебное пособие для бакалавров / Т.И.Трофимова.—2-е изд., перераб и допол.—М.: Издательство Юрайт,2013.—265с.	7			
2	Благовещенский, В.В. Компьютерные лабораторные работы по физике, химии. биологии: учебное пособие / В.В. Благовещенский. — СПб.: Издво « Лань», 2017. —100с.+СD	1			
3	Благовещенский, В.В.Компьютерные лабораторные работы по физике в пакете MathCad: учебное пособие / В.В. Благовещенский. – СПб.: Изд-во « Лань»,2013. –96с.+ CD	1			
4	Трофимова, Т.И. Физика. В таблицах и формулах: учебное пособие / Т.И. Трофимова. – Москва: КНОРУС,2020. –448с.	2			
5	Кузнецов, С.И. Физика: Основы электродинамики. Электромагнитные колебания и волны: учебное пособие / С.И. Кузнецов. – 4-е изд., испр. и доп. – Москва: Вузовский учебник: ИНФРА-М,2022. –231с.	2			
2.2. Нормативно-технические издания					
	Не используется				
	3. Методические указания для студентов по освоению дисциплины				
	Не используется				
	4. Учебно-методическое обеспечение самостоятельной работы студента				
	Не используется				

6.2. Электронная учебно-методическая литература

Вид литературы ЭБС	Наименование разработки	Ссылка на информационный ресурс	Доступность ЭБС (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная	Барков, Ю.А.Сборник задач	URL:	локальная сеть; /
литература	по общей физике / автсост.	http://elib.pstu.ru/.	свободный доступ
	Ю.А. Барков,О.М. Зверев,	docview/?id=1604.pdf.	
	А.В. Перминов. – Пермь:		
	Изд-во Перм. нац. исслед.		
	политехн. ун-та, 2011. – 457 с.		
Дополнительная	Вотинов, Г.Н. Физика:	URL:	локальная сеть;
литература	учебное пособие	http://elib.pstu.ru/.	свободный доступ
	/Г.Н.Вотинов, А.В. Перминов	docview/?id=473.pdf.	
	; под общ. ред. А.И. Цаплина.		
	– Пермь: Изд-во ПГТУ,2008.		
	_347c.	*****	
Дополнительная	Паршаков, А.Н. Принципы и	URL:	локальная сеть;
литература	практика решения задач по	http://elib.pstu.ru/.	свободный доступ
	общей физике:учеб. пособие /	docview/?id=514.pdf.	
	А.Н. Паршаков. – Пермь:		
	Изд-во Перм. гос. техн.ун-та,		
	2008. – Ч. 1: Механика.		
	Физика макросистем. – 249 с.		

Дополнительная литература	Краткий курс общей физики: учебное пособие / Ю.А. Барков, Г.Н. Вотинов, О.М Зверев, А.В. Перминов. – Пермь: Изд-во ПНИПУ, 2015. –407с	1 -	сеть Интернет / авторизованный / свободный доступ
Дополнительная литература	Благовещенский, В.В. Компьютерные лабораторные работы по физике, химии. биологии: учебное пособие / В.В. Благовещенский. – СПб.: Изд-во « Лань»,2017. – 100с.+CD		1 электрон. опт. диск
Дополнительная литература	Благовещенский, В.В. Компьютерные лабораторные работы по физике в пакете MathCad: учебное пособие / В.В. Благовещенский. – СПб.: Изд-во « Лань»,2013. –96с.+ CD		1 электрон. опт. диск

6.3. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Вид БД	Наименование БД	
Научная библиотека Пермского национального	http://lib.pstu.ru/	
исследовательского политехнического университета		
Электронно-библиотечная система Лань	https://e.lanbook.com/	
Электронно-библиотечная система IPRbooks	https://www.iprbookshop.ru/	
Информационные ресурсы Сети Консультант Плюс	https://www.consultant.ru/	

6.4. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО			
Операционные системы	- Windows XP, Лицензия Microsoft Open License №42615552;			
Офисные приложения	-Microsoft Office 2007, Лицензия Microsoft Open License №42661567;			

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного	Количество единиц	
	оборудования		
Лекционные,	Лекционная аудитория (мультимедийный класс)	34	
практические и	рабочие места обучающихся	1	
лабораторные	рабочее место преподавателя	1	
занятия.	технические средства обучения: мультимедиа		
	комплекс в составе		
	мультимедиа проектор потолочного крепления		
	ноутбук, проекционный экран;		
	доска аудиторная для написания мелом,		
	информационные стенды.		

8. Фонд оценочных средств дисциплины

Фонд оценочных средств для проведения промежуточной аттестации обучающихся является частью (приложением) к рабочей программе дисциплины «Физика». Текущий контроль проводится в форме защиты практических работ, проверки самостоятельной работы студентов. Рубежный контроль проводится в форме тестирования и контрольной работы. Итоговым контролем является экзамен.

Описан в отдельном документе.