Министерство науки и высшего образования Российской Федерации Чайковский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

Пермский национальный исследовательский политехнический университет

Кафедра автоматизации, информационных и инженерных технологий

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Электроснабжение, релейная защита и автоматика» Приложение к рабочей программе дисциплины

Направление подготовки: 15.03.04 Автоматизация технологических

процессов и производств

Направленность (профиль)

образовательной программы:

Автоматизация технологических процессов и производств в машиностроении и энергетике

Квалификация выпускника:

«бакалавр»

Выпускающая кафедра:

кафедра автоматизации, информационных и

инженерных технологий

Форма обучения:

Очно-заочная

Kype: 5

Семестр: 9

Трудоёмкость:

Кредитов по рабочему учебному плану:

5 3E

Часов по рабочему учебному плану:

180 ч.

Форма промежуточной аттестации:

Экзамен: 9 семестр.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины «Электроснабжение, релейная защита и автоматика». Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (9-ый семестр учебного плана) и разбито на 6 модулей. В дисциплине предусмотрены: аудиторные лекционные, лабораторные, практические занятия и самостоятельная работа студентов. Лабораторные работы предусмотрены в 2-4 модулях. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине «Электроснабжение, релейная защита и автоматика» (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного (итогового) контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, выполнении индивидуальных заданий, экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля					
		Текущий		Рубежны	Итоговый		
		TO	ИЗ	Курс П	ОЛР	Экзамен	
Усвоенные знания							
Знать состав, этапы, последовательность и	C1				ОЛР		
особенности предпроектного обследования и							
проектирования объектов профессиональной							
деятельности в соответствии с техническим							
заданием и нормативнотехнической							
документацией, соблюдая различные							
технические, энергоэффективные и							
экологические требования;							
Знать особенности построения и защиты					ОЛР		
систем электроснабжения потребителей;							
Знать требования к электроснабжению	C1						
потребителей;							
Знать схемы и основное электротехническое							
и коммутационное оборудование подстанций							

систем электроснабжения;		T-0		TIDI		
Знать назначение и виды устройств релейной		ТО		ИЗ1		
защиты и автоматики в системах						
электроснабжения;		F-2				
Знать назначение, принципы действия,		TO				
устройств автоматизации управления систем						
электроснабжения;						
Знать виды повреждений в СЭС и	C2					
требования к РЗиА;						
Знать особенности устройства и работы	C3					
противоаварийной автоматики подстанций.						
Освоенн	ые ум	ения				
Уметь использовать методики расчета и					ОЛР	
выбора оборудования систем релейной						
защиты и автоматики;						
Уметь читать схемы систем					ОЛР	П3
электроснабжения;						
Уметь читать и составлять схемы релейной			ИЗ1			ПЗ
защиты и автоматики;			ИЗ2			
Уметь проектировать компоненты систем						ПЗ
релейной защиты и автоматизации						
электроэнергетических систем;						
Уметь проверять эффективность			И31			ПЗ
функционирования РЗиА объекта энергетики			И32			
Приобретен	ные в.	падени:	я			
Владеть навыками использования					ОЛР	ПЗ
современных программных продуктов для						
расчета и выбора оборудования систем						
релейной защиты и автоматики						
Владеть навыками навыками					ОЛР	ПЗ
осуществления контроля технического						
состояния РЗиА;						
Владеть навыками разработки схемы РЗиА			И31			ПЗ
объекта энергетики;			И32			
Владеть навыками использования					ОЛР	
информационных технологий при						
проектировании средств релейной защиты и						
автоматизации электроэнергетических						
систем;						
С – собеседование по теме: ИЗ – индивидую	ильное	задани	<u>е: О</u> Л	p = om	чет по ла	бораторной

C-cобеседование по теме; H3-uндивидуальное задание; OЛP-oтчет по лабораторной работе; KP-контрольная работа; TB-теоретический вопрос; H3-практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем контрольных работ, защиты отчетов по лабораторным работам.
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала проводится в форме опроса, анализа усвоения материала предыдущей лекции, собеседования или выборочного теоретического опроса студентов на лабораторных и практических занятиях.

Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (см. табл. 1.1) проводится в форме защиты лабораторных работ, проведения рубежных контрольных работ (после изучения раздела учебной дисциплины), выполнения индивидуальных заданий.

2.2.1. Защита лабораторных работ

Всего запланировано 4 лабораторные работы. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом

или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Выполнение индивидуальных заданий

Запланировано в рамках самостоятельной работы студентов выполнение 2 индивидуальных задания по модулю (ИЗМ) после освоения студентами учебных модулей дисциплины.

Первое индивидуальное задание выполняется по модулю 2 «Токовые защиты систем электроснабжения» в форме командной работы по разработке презентаций. Примерные темы презентаций «Оптические и электронные трансформаторы тока и напряжения», «Цифровые реле».

ИЗМ 2 по модулю 4 «Автоматизация управления систем электроснабжения» выполняется в форме командной работы по разработке Вики ресурса на платформе Moodle на тему «Применение современных технологий при автоматизации систем электроснабжения» в соответствии со структурой Вики ресурса, заданной преподавателем

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к итоговой аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ, индивидуальных заданий и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине письменно по билетам. Билет содержит задания для проверки знаний, освоенных умений и для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали задания, контролирующие уровень сформированности заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые вопросы и задания для экзамена по дисциплине Типовые задания для контроля усвоенных знаний, освоенных умений и контроля приобретенных владений:

- 1. Рассчитать релейную защиту воздушной линии электропередач:
- основная защита: токовая отсечка;
- резервная защита: МТЗ.
- 2. Рассчитать релейную защиту силового трансформатора:
- MT3:
- защита от перегрузки.
- 3. Рассчитать релейную защиту асинхронного электродвигателя:
- защита от междуфазных КЗ;
- защита от замыканий на землю в обмотках статора (при необходимости);

- защита от перегрузки;
- защита от понижения напряжения.

Полный перечень заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Приложение № 1 Форма билета для экзамена

Министерство науки и высшего образования Российской Федерации Чайковский филиал федерального государственного автономного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет

Кафедра: <u>Автоматизации, информационных и</u> инженерных технологий

Направление: <u>15.03.04 Автоматизация</u> <u>технологических процессов и производств</u>

Дисциплина: Электроснабжение, релейная защита и

<u>автоматика</u>

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Рассчитать релейную защиту воздушной линии электропередач по параметрам в таблице 1:
- основная защита: токовая отсечка;
- резервная защита: МТЗ.
- 2. Рассчитать релейную защиту силового трансформатора по параметрам в таблице 1:
 - MT3;
- 3. Рассчитать релейную защиту асинхронного электродвигателя:
- защита от междуфазных КЗ;
- защита от перегрузки;
- защита от понижения напряжения.

Таблица 1

таслица т	
Параметр	
$S_{{\scriptscriptstyle K.3.MAX}}$ MBA	500
U ₁ , κΒ	35
U ₂ , κΒ	6
1, км	18
S _{TP-PA} , MBA	0,4

Таблица 2

Вариант	1
S _T , MBA	0,4
e _k , %	6,5
$P_{\mathrm{Dl}}, \mathrm{MBr}$	0,2
$\eta_{\mathrm{D1}}, \%$	96
$\cos\phi_{D1}$	0,91
$I_{ m IIYCK}/I_{ m D1}$	5,5
1 ₁ , км	1,9

« » 20 Г. Зав. кафедрои	« »	20 г.	Зав. кафедрой	
-------------------------	-----	-------	---------------	--