Министерство науки и высшего образования Российской Федерации Чайковский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

Пермский национальный исследовательский политехнический университет

Кафедра автоматизации, информационных и инженерных технологий

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Системы управления исполнительными механизмами» Приложение к рабочей программе дисциплины

Направление подготовки: 15.03.04 Автоматизация технологических процессов и

производств

Направленность (профиль) образовательной программы:

Автоматизация технологических процессов и производств в машиностроении и энергетике

Квалификация выпускника:

«бакалавр»

Выпускающая кафедра:

кафедра автоматизации, информационных и

инженерных технологий

Форма обучения:

Очно-заочная

Курс: 3 Семестры: 6

Трудоёмкость:

Кредитов по рабочему учебному плану: 4 ЗЕ Часов по рабочему учебному плану: 144 ч.

Форма промежуточной аттестации:

Экзамен: 9 семестр.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины «Системы управления исполнительными механизмами». Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1 Перечень формируемых частей компетенций, этапы их формирования и контролируемые результаты обучения

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД, освоение учебного материала дисциплины запланировано в течение одного семестра (9-го семестра учебного плана) и разбито на 2 модуля. В каждом разделе предусмотрены: аудиторные лекционные, лабораторные работы, самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине «Системы управления исполнительными механизмами» (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного (итогового) контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам, выполнении индивидуальных заданий, экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)	Вид контроля					
	Текущий		Рубежный			Итоговый
	C	TO	И3	КР	ОЛР	Экзамен
Усвоенные знания						
Знать – классификационные признаки ИМ,	C 1					TB
устройство, принципы функционирования и						
математические модели						
электромеханических, пневматических и						
гидравлических ИМ поворотного,						
многооборотного и прямоходного действия						
Знать - особенности построения систем	C2					TB
управления исполнительными механизмами						
постоянной и переменной скорости;						
Знать - состав, этапы, последовательность и	C2					TB

особенности предпроектного обследования и			
проектирования систем управления			
исполнительными механизмами, автоматики			
и автоматизации в соответствии с			
техническим заданием и нормативно-			
технической документацией, соблюдая			
различные технические, энергоэффективные			
и экологические требования;			
Освоенные умо	ения	'	
Уметь – использовать методики расчета и	ИЗ		ПЗ
выбора оборудования систем управления			
исполнительными механизмами;			
Уметь – использовать знания технических	ИЗ		ПЗ
характеристик ИМ для компетентного			
обоснования выбора средств АТПП;			
Уметь – использовать знания принципов	ИЗ	ОЛР	ПЗ
проектирования СУИМ для синтеза и анализа			
типовых структур СУИМ постоянной и			
переменной скорости;			
Уметь – разрабатывать проекты систем	ИЗ		ПЗ
АТПП с применением СУИМ в соответствии			
с нормативно-технической документацией			
РФ;			
Приобретенные в.	тадения		
Владеть - навыками использования	ИЗ	ОЛР	ПЗ
современных программных продуктов для			
расчета и выбора оборудования систем			
управления исполнительными механизмами;			
Владеть - навыками осуществления контроля		ОЛР	ПЗ
технического состояния СУИМ;			
Владеть – навыками проектирования систем	ИЗ	ОЛР	ПЗ
АТПП с применением различных ИМ,			
исследования и наладки СУИМ постоянной и			
переменной скорости;			
Владеть – навыками доработки проектов	ИЗ		ПЗ
СУИМ с учетом высказанных замечаний			-
оперативного персонала.			
C and an experiment H^2 and an experiment	and arrival OIID		,

C — собеседование по теме; II3 — индивидуальное задание; OЛP — отчет по лабораторной работе; KP- контрольная работа; TB — теоретический вопрос; II3 — практическое задание.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации

обучающихся по образовательным программам высшего образования в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем выполнения индивидуальных заданий, защиты отчетов по лабораторным работам; рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный во время каждого контрольного мероприятия внутри модулей дисциплины;
- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала проводится в форме опроса, анализа усвоения материала предыдущей лекции, собеседования или выборочного теоретического опроса студентов на лабораторных и практических занятиях.

Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (см. табл. 1.1) проводится в форме защиты лабораторных работ, выполнения индивидуальных заданий.

2.2.1. Защита лабораторных работ

Всего запланировано 5 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2 Выполнение индивидуального задания на самостоятельную работу по модулю дисциплины

Запланировано выполнение индивидуального задания по модулю 2 (ИЗМ) после освоения студентами учебных модулей дисциплины. Отчет по модулю 2 «Синтез двухконтурной дискретно-непрерывной системы регулирования скорости

ИМ на основе силового модуля «Тиристорный преобразователь-двигатель постоянного тока».

Типовые индивидуальные задания по первому модулю:

- 1. Выполнить синтез замкнутых контуров регулирования тока якоря и скорости ротора двигателя по критерию «модульный (технический) оптимум» для заданной совокупности параметров тиристорного преобразователя и электродвигателя.
- 2. Выполнить синтез замкнутого контура регулирования тока якоря по критерию «технический оптимум», а контура регулирования скорости ротора двигателя по критерию «симметричный оптимум» для заданной совокупности параметров тиристорного преобразователя и электродвигателя.
- 3. Выполнить синтез замкнутого контура регулирования тока якоря по критерию «технический оптимум», а контура скорости ротора двигателя по критерию «апериодический оптимум 2-го порядка» для заданной совокупности параметров тиристорного преобразователя и электродвигателя.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к итоговой аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ, индивидуальных заданий и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит два теоретических вопроса (ТВ) для проверки усвоенных знаний, одно практическое задание (ПЗ) для проверки освоенных умений и для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности всех заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1 Типовые вопросы для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Классификационные признаки исполнительных механизмов (ИМ). Общее устройство и принципы функционирования электрических, пневматических, гидравлических и электромагнитных ИМ поворотного, многооборотного и прямоходного действия.
- 2. Классификационные признаки СУИМ. Основные режимы функционирования и области применения СУИМ в составе систем АТПП.
- 3. Обобщенная функциональная схема СУИМ постоянной скорости. Разомкнутые релейно-контакторные и бесконтактные СУИМ.
- 4. Основные схемные решения СУИМ постоянной скорости в режимах стабилизации технологических координат.
- 5. Обобщенная структура СУИМ переменной скорости. Режимы стабилизации, программного и следящего управления ИМ.

Типовые вопросы для контроля освоенных умений и владений:

- 1. Рассчитать параметры модели силового преобразователя энергии как апериодического звена СУИМ при следующих данных: номинальное напряжение управления 5 В, номинальное выходное средневыпрямленное напряжение 230 В, время переходного процесса 0,02 с.
- 2. Найти параметры аналогового ПИ-регулятора некоего контура регулирования СУИМ на базе операционного усилителя при следующих элементах в его прямой и обратной цепи: $R_{\rm BX} = 10$ кОм, $R_{\rm oc} = 100$ кОм, $C_{\rm oc} = 1$ мкФ.
- 3. Определить дискретную передаточную функцию ПИ-регулятора некоего контура регулирования СУИМ, используя метод прямоугольников, при следующих исходных данных: коэффициент усиления $K_{\rm II}=10$, постоянная времени интегрирования $T_{\rm II}=0.1$ с, такт дискретного управления $T_{\rm O}=0.01$ с.
- 4. Записать разностное уравнение дискретного регулятора СУИМ класса «вход-выход» с передаточной функцией: $D(z) = \frac{U(z)}{\varepsilon(z)} = \frac{10}{1-0.5\ z^{-1}}$.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Приложение № 1 Форма билета для экзамена

Министерство науки и высшего образования Российской	Кафедра	Автоматизации, информационных и инженерных технологий							
Федерации Чайковский филиал федерального государственного автономного	Направление	15.03.04 Автоматизация технологических процессов и							
образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет»	Направленность	производств Автоматизация технологических процессов и производств в машиностроении и энергетике е							
	Дисциплина	Системы управления исполнительными механизмами							
 ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1_ 1. Назначение, классификация исполнительных механизмов (ИМ). 									
2. Структурная схема ДПТ, регулируемого									
2. Структурная схема дттт, регулируемого 3. Найти параметры аналогового ПИ-регулиремого СУИМ на базе операционного усилителя обратной цепи: $R_{\rm BX} = 10~{\rm kOm}$, $R_{\rm oc} = 100~{\rm kOm}$	лятора некоег при следующи	о контура регулирования их элементах в его прямой и							
20 г.	Зав. кафедрой								