Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Математика»

Приложение к рабочей программе дисциплины

Направление подготовки: 20.03.01 Техносферная безопасность

заочная форма обучения

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

Предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине.

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала и в ходе практических занятий, а также на экзамене и диф.зачете. Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и рубежного контроля.

1. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий) и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

1.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

1.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений проводится в форме защиты практических занятий и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

1.2.1. Защита практических занятий

Всего запланировано 18 практических занятий. Типовые темы практических занятий приведены в РПД.

Защита практического занятия проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

1.2.2. Рубежная контрольная работа

Согласно РПД запланировано 3 рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины. Первая КР по разделам «Алгебра и геометрия», «Функция», 2-я «Интегралы, дифференциальные уравнения», 3-я «Теория вероятностей и математическая статистика».

Типовые шкала и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.1. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех практических работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности всех

заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов знать, уметь, владеть заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов знать, уметь и владеть приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2.Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

ЗАДАНИЯ ПО ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ

Правильный ответ	Содержание вопроса	Компетенция
a=-7	Определить, при каком значении а прямые будут пересекаться в одной точке: $2x - y + 3 = 0$, $x + y + 3 = 0$ ax + $y - 13 = 0$.	ОПК-1
6	Чему равна площадь треугольника, отсекаемого прямой $3x - 4y - 12 = 0$ от координатного угла?	ОПК-1
4/5	Чему равен эксцентриситет линии $9x^2 + 25y^2 = 225$?	ОПК-1
16	Дано a =10, b =2, ab=12. Чему равен [ab] ?	ОПК-1
4	Радиус сферы $x^2 + y^2 + z^2 + 20y = 0$ равен?	ОПК-1
-3	Решение уравнения $\begin{vmatrix} 1 & 3 & x \\ 4 & 5 & -1 \\ 2 & -1 & 5 \end{vmatrix} = 0$ равно?	ОПК-1
0; 8	Закон движения материальной точки по прямой имеет вид $x = 0.25 t^4 - 4t^3 + 16t^2$ В какие моменты времени точка находится в начале координат?	ОПК-1
1	Предел функции $\lim_{x\to 0} \frac{\sin 5x}{tg12x}$ равен.	ОПК-1
1	Чему равна сумма ряда $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$? Минимум функции $z=x^2-xy+y^2+9x-6y+20$	ОПК-1
-1	Минимум функции $z=x^2 - xy + y^2 + 9x - 6y + 20$	ОПК-1
$\frac{1}{2}\ln 2x+5 +C$	Интеграл $\int \frac{dx}{2x+5}$ равен	ОПК-1
π/12	Интеграл равен $\int_{0}^{1} \frac{x^2 dx}{1+x^6}$	ОПК-1
сходящимся	Каким является ряд $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$?	ОПК-1
0,125	Какую работу надо затратить, чтобы растянуть пружину на 5 см, если сила в 1 H растягивает ее на 1 см?	ОПК-1
7	Мода вариационного ряда 1, 2, 5, 6, 7, 7, 10 равна	ОПК-1
8/21	Событие A может наступить лишь при условии появления одного из двух несовместных событий B_1 и B_2 , образующих полную группу событий. Известны вероятность $P(B_1) = \frac{1}{7}$ и условные вероятности $P(A_{B_1})^{\frac{2}{3}}$, $P(A_{B_2}) = \frac{1}{3}$. Тогда Вероятность $P(A)$ равна	ОПК-1
9 – 7i	Если z_1 =2-i , z_2 =5-i , то z_1 * z_2 равно	ОПК-1
1/3	Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет <i>менее трех очков</i> , равна	ОПК-1
-2	Векторы а и в изображены на рисунке.	ОПК-1

	у <u>Б</u> -1 0 <u>a</u> 2 г Тогда их скалярное произведение а*b равно	
гиперболически й цилиндр	Тогда их скалярное произведение $a*b$ равно Поверхность, определяемая уравнением $\frac{x^2}{36} - \frac{y^2}{16} = 1$ является	ОПК-1
10626	Из 24 участников конференции избрать делегацию, состоящую из 4 человек. Тогда количество способов выбора равно	ОПК-1
$e^{-\frac{x}{2}}(C_1+C_2x)$	Решение уравнения $4y'' + 4y' + 4 = 0$ равно	ОПК-1
1)	Вероятность невозможного события равна 1) 0 2) -1 3) 1 4) 0,001	ОПК-1
1)	Разложение определителя $\begin{bmatrix} 0 & 0 & a_3 \\ 4 & -5 & 2 \\ c_1 & c_2 & 0 \end{bmatrix}$ по элементам первой строки имеет вид 1) $a_3 \begin{vmatrix} 4 & -5 \\ c_1 & c_2 \end{vmatrix}$ 2) $\begin{vmatrix} 4 & -5 \\ c_1 & c_2 \end{vmatrix}$ 3) $-\begin{vmatrix} 4 & -5 \\ c_1 & c_2 \end{vmatrix}$ 4) $-a_3 \begin{vmatrix} 4 & -5 \\ c_1 & c_2 \end{vmatrix}$	ОПК-1
1)	Дана система линейных уравнений $\begin{cases} 5x_1 - 3x_2 + x_3 = -1 \\ x_1 + x_2 - x_3 = 0 \\ 2x_1 + 3x_2 + x_3 = 5 \end{cases}$ Тогда матричная форма записи этой системы имеет вид $1) \begin{pmatrix} 5 & -3 & 1 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix}$ $2) \begin{pmatrix} 5 & 1 & 2 \\ -3 & 1 & 3 \\ 1 & -1 & 1 \end{pmatrix} \cdot (x_1 x_2 x_3) = (-1 0 5)$	ОПК-1

	$ \begin{vmatrix} 3 \\ 1 \\ 1 \\ 1 \\ -1 \\ 2 \\ 3 \\ 1 \end{vmatrix} \cdot (x_1 x_2 x_3) = \begin{pmatrix} -1 \\ 0 \\ 5 \\ 5 \\ \end{vmatrix} $ $ 4) \begin{pmatrix} 5 & 1 & 2 \\ -3 & 1 & 3 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 5 \\ \end{vmatrix} $	
4)	Дана матрица $A = \begin{pmatrix} 3 & -4 \\ 5 & 1 \end{pmatrix}$. Тогда алгебраическим дополнением элемента $a_{21} = 5$ Является 1) 1 2) -4 3) 5 4) 4	ОПК-1
4)	Если $f(x) = x^3 - 1$, то коэффициент a_4 разложения данной функции в ряд Тейлора по степеням (x-1) равен 1) 0,25 2) 3 3) 1 4) 0	ОПК-1
2)	Дискретная случайная величина задана законом Распределения Вероятностей: X -2 1 3 P 0,1 a B Тогда математическое ожидание равно 1,9, если 1) a=0,5; b=0,4 2) a=0,3; b=0,6 3) a=0,45; b=0,55 4) a=0,6; b=0,3	ОПК-1
2)	Частному решению линейного неоднородного дифференциального $y^{x} - y^{x} + 12y = x + 6$ по виду его правой части соответствует функция 1) $f(x) = e^{-3x}(Ax + b)$ 2) $f(x) = Ax + B$ 3) $f(x) = Ax^{2} + Bx$ 4) $f(x) = Ae^{-3x} + Be^{4x}$	ОПК-1
1)	Производная частного $\frac{4x-1}{3x+1}$ равна 1) $-\frac{7}{(3x+1)^2}$ 2) $\frac{2x+1}{(3x+1)^2}$	ОПК-1

3)
$$\frac{7}{(3x+1)}$$
4) $\frac{7}{(3x+1)^2}$

Типовые задания для контрольных работ.

Контрольная работа № 1 по дисциплине «математика»

- 1. Даны вершины треугольника ABC: A (x_1, y_2) , B (x_2, y_2) , C (x_3, y_3) . Найти:
- а) уравнение стороны АВ;
- б) уравнение высоты СН;
- в) уравнение медианы АМ;
- г) точку N пересечения медианы AM и высоты CH;
- д) уравнение прямой, проходящей через вершину С параллельно стороне АВ;
- е) расстояние от точки С до прямой АВ. Выполнить рис.
- 1.1. A(-2;4), B(3,1), C(10,7),
- 1.2. A(-3;-2), B(14,4),C(6,8)
- B(-3,-1), C(11,-3), 1.3. A(1,7),
- 1.4. A(1,0),B(-1,4), C(9,5),
- 1.5. A(1,-2),B(7,1),C(3,7)
- 1.6. A(-2,-3), B(1,6), C(6,1),
- 1.7. A(-4,2),B(-6,6), C(6,2),
- 1.8. A(4,-3), B(7,3), C(1,10),
- 1.9. A(4,-4), B(8,2), C(3,8),
- 1.10. A(-3,-3),B(5,-7), C(7,7),
- 1.11. A(1,-6), B(3,4), C(-3,3)1.12. A(-4,2), B(8,-6),C(2,6),
- 1.13. A(-5,2),B(0,-4),C(5,7),
- 1.14. A(4,-4),B(6,2), C(-1,8)1.15. A(-3.8),B(-6,2), C(0,-5)
- 2. Решить следующие задачи.
- 2.1. Найти уравнение прямой, проходящей через точку пересечения прямых 3x-2y-7=0 и x+3y-6=0 и отсекающей на оси абсцисс отрезок, равный 3.
- 2.2. Найти проекцию точки A(-8,12) на прямую, проходящую через точки B(2,-3) и C(-5,1).
- Даны две вершины треугольника ABC: A(-4,4), B(4,-12) и точка M(4,2)2.3. пересечения его высот. Найти вершину С.
- Найти уравнение прямой, отсекающей на оси ординат отрезок, равный 2, и проходящей параллельно прямой 2y-x=3.
- 2.5. Найти уравнение прямой, проходящей через точку А (2,-3) и точку пересечения прямых 2x-y=5 и x+y=1.
- Доказать, что четырехугольник АВСО трапеция, если А (3,6), В (5,2), С(-1,-3), D(-5,5).

- 2.7. Записать уравнение прямой, проходящей через точку A (3,1) перпендикулярно к прямой BC, если B(2,5), C(1,0).
- 2.8. Найти уравнение прямой, проходящей через точку A(-2,1) параллельно прямой MN, если M(-3,-2), N(1,6).
- 2.9. Найти точку, симметричную точке M(2,-1) относительно прямой x-2y+3=0.
- 2.10. Найти точку О пересечения диагоналей четырехугольника ABCD, если A(-1,-3), B(3,5), C(5,2), D(3,-5).
- 2.11. Через точку пересечения прямых 6x-4y+5=0, 2x+5y+8=0 провести прямую, параллельную оси абсцисс.
- 2.12. Известны уравнения стороны AB треугольника ABC 4x+y=12, если высот BH 5x-4y=12 и AM x+y=6. Найти уравнения двух сторон треугольника ABC.
- 2.13. Даны две вершины треугольника АВС: А (-6,2), В (2,-2) и точка пересечения его высот Н (1,2). Найти координаты точки М пересечения стороны АС и высоты ВН.
- 2.14. Найти величины отрезков, отсекаемых на осях координат плоскостью, проходящей через М (-2,7,3) параллельно плоскости x-4y+5z-1=0.
- 2.15. Составить уравнение плоскости, проходящей через середину отрезка M_1M_2 перпендикулярно к этому отрезку, если $M_1(1,5,6)$, $M_2(-1,7,10)$.
- 3. Даны четыре точки $A_1(x_1, y_1)$, $A_2(x_2, y_2)$, $A_3(x_3, y_3)$ и $A_4(x_4, y_4)$. Составить уравнения:
- а) плоскости $A_1A_2A_3$; б) прямой A_1A_2 ; в) прямой A_1M , перпендикулярной к плоскости $A_1A_2A_3$; г) прямой A_3 N, параллельной прямой A_1A_2 ; д) плоскости, проходящей через точку A_4 перпендикулярно к прямой A_1A_2 Вычислить:
- е) синус угла между прямой A_1A_4 и плоскостью $A_1A_2A_3$;
- ж) косинус угла между координатной плоскостью Оху и плоскостью $A_1A_2A_3$;
- 3.1. $A_1(3,1,4)$, $A_2(-1,6,1)$, $A_3(-1,1,6)$, $A_4(0,4,-1)$.
- 3.2. $A_1(3,-1,2)$, $A_2(-1,0,1)$, $A_3(1,7,3)$, $A_4(8,5,8)$.
- 3.3. $A_1(3,5,4)$, $A_2(5,8,3)$, $A_3(1,2,-2)$, $A_4(-1,0,2)$.
- 3.4. $A_1(2,4,3)$, $A_2(1,1,5)$, $A_3(4,9,3)$, $A_4(3,6,7)$.
- 3.5. $A_1(9,5,5)$, $A_2(-3,7,1)$, $A_3(5,7,8)$, $A_4(6,9,2)$.
- 3.6. $A_1(0,7,1)$, $A_2(2,-1,5)$, $A_3(1,6,3)$, $A_4(3,-9,8)$.
- 3.7. $A_1(5,5,4)$, $A_2(1,-1,4)$, $A_3(3,5,1)$, $A_4(5,8,-1)$.
- 3.8. $A_1(6,1,1)$, $A_2(4,6,6)$, $A_3(4,2,0)$, $A_4(1,2,6)$.
- $3.9. A_1(7,5,3), A_2(9,4,4), A_3(4,5,7), A_4(7,9,6).$
- 3.10. $A_1(6,8,2)$, $A_2(5,4,7)$, $A_3(2,4,7)$, $A_4(7,3,7)$.
- 3.11. $A_1(4,2,5)$, $A_2(0,7,1)$, $A_3(0,2,7)$, $A_4(1,5,0)$. 3.12. $A_1(4,4,10)$, $A_2(7,10,2)$, $A_3(2,8,4)$, $A_4(9,6,9)$.
- 3.13. $A_1(4,6,5)$, $A_2(6,9,4)$, $A_3(2,10,10)$, $A_4(7,5,9)$.
- 3.14. $A_1(3,5,4)$, $A_2(8,7,4)$, $A_3(5,10,4)$, $A_4(4,7,8)$.
- 3.15. $A_1(10,9,6)$, $A_2(2,8,2)$, $A_3(9,8,9)$, $A_4(7,10,3)$.

Задача 4. Решить задачу;

1. Найти: (AB)C и A (BC):
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} -5 & 3 \\ 2 & -1 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$

2. Найти: A*B,
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 1 \\ 1 & 5 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 0 & 4 \end{pmatrix}$ 3. Найти: 2A - 3B, $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -2 & -1 \\ -3 & 1 & 3 \end{pmatrix}$, $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & 4 \\ 3 & 4 & 3 \end{pmatrix}$ 4. Найти: A*A^T: $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$

3. Найти : 2A - 3 B,
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

4. Найти : **A*A**^T :

$$A = \begin{bmatrix} -3 & 4 & 0 \\ 4 & 5 & 1 \\ -2 & 3 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 7 & -1 \\ 0 & 2 & 6 \\ 2 & -1 & 1 \end{bmatrix}$$

4. Решить уравнение:
$$\begin{vmatrix} -3 & x-1 & 1 \\ x+2 & 2 & 3 \\ 0 & 1 & x \end{vmatrix} = 6$$

4. Решить уравнение:
$$\begin{vmatrix} -3 & x-1 & 1 \\ x+2 & 2 & 3 \\ 0 & 1 & x \end{vmatrix} = 6$$
5. Решить уравнение: $\begin{vmatrix} -1 & 0 & 2x+3 \\ 3-x & 1 & 1 \\ 2x+1 & -1 & 2 \end{vmatrix} = 0$

6. Найти ранг матрицы:
$$\begin{pmatrix}
1 & 3 & 5 & -1 \\
2 & -1 & -3 & 4 \\
5 & 1 & -1 & 7 \\
7 & 7 & 9 & 1
\end{pmatrix}$$
10. Решить неравенство:
$$\begin{vmatrix}
2 & 0 & -1 \\
1 & x+5 & 2-x \\
3 & -1 & 2
\end{vmatrix} \le 4$$

10. Решить неравенство:
$$\begin{vmatrix} 2 & 0 & -1 \\ 1 & x+5 & 2-x \\ 3 & -1 & 2 \end{vmatrix} \le 4$$

11. Найти ранг матрицы

$$\begin{pmatrix}
1 & -3 & 1 & -14 & 22 \\
-2 & 1 & 3 & 3 & -9 \\
-4 & -3 & 11 & -19 & 17
\end{pmatrix}$$

Найти значение матричного многочлена: $f(x) = x^3 - 6x^2 + 9x + 4$

12.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

Решить матричное уравнение и выполнить проверку.

1.
$$\begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \cdot X = \begin{pmatrix} -3 & -1 \\ 8 & 12 \end{pmatrix}$$

14. Вычислить: 2A - 3B,
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -2 & -1 \\ -3 & 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -2 & 5 \\ -9 & 12 & -1 \\ -3 & 5 & 1 \end{pmatrix}$

15. Решить уравнение:
$$\begin{vmatrix} -3 & x-1 & 1 \\ x+2 & 2 & 3 \\ 0 & 1 & x \end{vmatrix} = 6$$

5. Найти частные производные и частные дифференциалы 1 – го порядка следующих функций.

1.
$$z = \ln(y^2 - e^{-x})$$
.

$$2. \quad z = \operatorname{arctg}\left(x^2 + y^2\right).$$

$$3. \quad z = \sin \sqrt{y/x^3} \ .$$

4.
$$z = \operatorname{ctg}\sqrt{xy^3}$$
.

5.
$$z = \ln(3x^2 - y^4)$$
.

6.
$$z = \operatorname{arcctg}(xy^2)$$
.

$$7. \quad z = \sin\sqrt{x - y^3} \ .$$

8.
$$z = \operatorname{ctg}(3x - 2y)$$

$$9. \quad z = \ln\left(\sqrt{xy} - 1\right).$$

$$10. z = \operatorname{arctg}\left(x^2 / y^3\right).$$

$$11. z = \sin \frac{x+y}{x-y}.$$

$$12. z = \operatorname{ctg}\sqrt{\frac{x}{x - y}}.$$

13.
$$z = \ln(3x^2 - y^2)$$

14.
$$z = \operatorname{arcctg} \frac{x^3}{v}$$
.

$$15. z = \sin\sqrt{\frac{y}{x+y}}.$$

6. Вычислить пределы функций.

1.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x + 1)}{x^4 + 4x^2 - 5}$$
.

3.
$$\lim_{x \to -1} \frac{\left(x^2 + 3x + 2\right)^2}{x^3 + 2x^2 - x - 2}$$
.

2.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x + x^2}.$$

4.
$$\lim_{x \to 1} \frac{\left(2x^2 - x - 1\right)^2}{x^3 + 2x^2 - x - 2}$$
.

5.
$$\lim_{x \to -3} \frac{\left(x^2 + 2x - 3\right)^2}{x^3 + 4x^2 + 3x}.$$

7.
$$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x+x^5}.$$

9.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 - x - 2}.$$

11.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}.$$

13.
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}.$$

15.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}.$$

6. $\lim_{x \to -1} \frac{\left(x^3 - 2x - 1\right)^2}{x^4 + 2x + 1}$.

8.
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{2x^2 - x - 1}.$$

10.
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2}.$$

12.
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}.$$

14.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
.

7. Исследовать функцию по схеме и построить график функции.

1.
$$y = x^2 - 4x - 5$$

2.
$$v = x^2 - 16x$$

2.
$$y = x^2 - 16x$$

3. $y = x^2 + x - 10$

4.
$$y = x^2 - 3x - 2$$

5.
$$y = x^2 - x - 2$$

5.
$$y = x^2 - x - 2$$

6. $y = 5x^2 - 2x - 7$

7.
$$y = x^2 + x + 1$$

8.
$$y = 3x^2 - 3x - 8$$

9.
$$y = -5 + 4x - x^2$$

10.
$$y = x^2 - 4x - 13$$

11.
$$y = x^2 - 2x - 15$$

12.
$$y = x^2 + 6x - 20$$

13.
$$y = 2x^2 + 2x - 5$$

14.
$$y = 2x^2 + 5x - 6$$

$$15. \qquad y = x^2 + 7x$$

б)

1.
$$y = x^3 e^x$$
.

2.
$$y = \frac{2x-1}{(x-1)^2}$$

$$3. v = xe^x.$$

4.
$$y = \frac{x^2 + 1}{x^2 - 4}$$

5.
$$y = \frac{x^3}{3 - x^2}$$

$$6. y(x-1) = x^3$$

7.
$$y = \frac{1}{x-1}$$
8. $y = (2x+5)$

8.
$$y=(2x+5)^3$$

$$9. y = \frac{x-1}{x+1}$$

$$10. \qquad y = \frac{3x}{x+2}$$

$$11. y = x + \frac{1}{x}$$

12.
$$y = -3x^4 + 6x^2$$

13.
$$y = (x-3)^2(2x-1)$$

14. $y = (x^2 - x) \cdot e^x$

$$14. y = (x^2 - x) \cdot e^x$$

15.
$$y = x^3 - 4x^2 - 5x$$

Контрольная работа № 2

1. Найти неопределенные интегралы.

$$1. \int \frac{dx}{x\sqrt{x^2+1}}$$

3.
$$\int \frac{dx}{x\sqrt{x^3-1}}$$

$$5. \int \frac{xdx}{\sqrt{x^4 + x^2 + 1}}$$

7.
$$\int tgx \ln \cos x dx$$

9.
$$\int \frac{x^3}{(x^2+1)^2} dx$$

11.
$$\int \frac{\sin x - \cos x}{(\cos x + \sin x)^3} dx$$

$$13. \int \frac{x^3 + x}{x^4 + 1} dx$$

$$15. \int \frac{x dx}{\sqrt[3]{x-1}}$$

$$2. \int \frac{1+\ln x}{x} dx$$

$$4. \int \frac{x^2 + \ln x^2}{x} dx$$

6.
$$\int \frac{(\arccos x)^3 - 1}{\sqrt{1 - x^2}} dx$$

8.
$$\int \frac{tg(x+1)}{\cos^2(x+1)} dx$$

$$10. \int \frac{1-\cos x}{\left(x-\sin x\right)^2} dx$$

$$12. \int \frac{x \cos x + \sin x}{(x \sin x)^2} dx$$

14.
$$\int \frac{xdx}{\sqrt{x^4 - x^2 - 1}}$$

16.
$$\int \frac{1 + \ln(x - 1)}{x - 1} dx$$

2. Вычислить определённые интегралы.

1.
$$\int_{e+1}^{e^2+1} \frac{1+\ln(x-1)}{x-1} dx$$

2.
$$\int_{0}^{1} \frac{(x^2+1)dx}{(x^3+3x+1)^2}$$

13

$$3. \int_{0}^{1} \frac{4arctgx - x}{1 + x^2} dx$$

5.
$$\int_{\pi}^{2\pi} \frac{x + \cos x}{x^2 + 2\sin x} dx$$

7.
$$\int_{0}^{1/2} \frac{8x - arctg2x}{1 + 4x^2} dx$$

9.
$$\int_{0}^{1} \frac{x dx}{x^4 + 1}$$

11.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x - 1/x}{\sqrt{x^2 + 1}} dx$$

13.
$$\int_{0}^{\sqrt{3}} \frac{x - (arctgx)^4}{1 + x^2} dx$$

15.
$$\int_{0}^{\sin 1} \frac{(\arcsin x)^2 + 1}{\sqrt{1 - x^2}} dx$$

4.
$$\int_{0}^{2} \frac{x^3 dx}{x^2 + 4}$$

6.
$$\int_{0}^{\pi/4} \frac{2\cos x + 3\sin x}{(2\sin x - 3\cos x)^3} dx$$

8.
$$\int_{1}^{4} \frac{1/(2\sqrt{x}) + 1}{(\sqrt{x} + x)^{2}} dx$$

10.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x+1/2}{\sqrt{x^2+1}} dx$$

12.
$$\int_{0}^{\sqrt{3}} \frac{arctgx + x}{1+x} dx$$

14.
$$\int_{0}^{1} \frac{x^3}{x^2 + 1} dx$$

16.
$$\int_{1}^{3} \frac{1+\sqrt{x}}{\sqrt{x}(x+1)} dx$$

3. Вычислить площади фигур, ограниченных графиками функций.

1.
$$y = (x-2)^3$$
, $y = 4x-8$

3.
$$y = 4 - x^2$$
, $y = x^2 - 2x$

5.
$$y = \sqrt{4 - x^2}, y = 0,$$

 $x = 0, x = 1$

7.
$$y = \cos x \sin^2 x, y = 0$$

(0 \le x \le \pi/2)

9.
$$y = \frac{1}{x\sqrt{1 + \ln x}}$$
,
 $v = 0, x = 1, x = e^3$

11.
$$y = (x+1)^2,$$
$$y^2 = x+1$$

13.
$$y = x\sqrt{36 - x^2}, y = 0$$

(0 \le x \le 6)

2.
$$y = x\sqrt{9 - x^2}, y = 0,$$

(0 \le x \le 3)

4.
$$y = \sin x \cos^2 x, y = 0$$

(0 \le x \le \pi 2)

6.
$$y = x^2 \sqrt{4 - x^2}, y = 0$$

(0 \le x \le 2)

8.
$$y = \sqrt{e^x - 1}, y = 0,$$

 $x = \ln 2$

10.
$$y = \arccos x, y = 0,$$
$$x = 0$$

12.
$$y = 2x - x^2 + 3$$
,
 $y = x^2 - 4x + 3$

14.
$$x = \arccos y, x = 0,$$

$$y = 0$$

y = xarctgx, y = 0,

13.
$$x = \sqrt{3}$$

Найти решение задачи Коши.

1.
$$y' - y/x = x^2$$
, $y(1) = 0$.

1.
$$y' - y/x = x^2$$
, $y(1) = 0$. 2. $y' - y \cot x = 2x \sin x$, $y(\pi/2) = 0$.

3.
$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0.4$. $y' + y \tan x = \cos^2 x$, $y(\pi/4) = 1/2$.

5.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = 3/2$. 6. $y' - \frac{1}{x+1}y = e^x(x+1)$, $y(0) = 1$.

7.
$$y' - \frac{y}{x} = x \sin x$$
, $y(\frac{\pi}{2}) = 1$.

7.
$$y' - \frac{y}{x} = x \sin x$$
, $y(\frac{\pi}{2}) = 1$. 8. $y' + \frac{y}{x} = \sin x$, $y(\pi) = \frac{1}{\pi}$.

9.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

10.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, \quad y(0) = \frac{2}{3}.$$

11.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$.

11.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$. 12. $y' + \frac{y}{x} = \frac{x+1}{x}e^x$, $y(1) = e$.

13.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$.

13.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$. 14. $y' - \frac{y}{x} = -\frac{12}{x^3}$, $y(1) = 4$.

15.
$$y' + \frac{2}{x}y = x^3$$
, $y(1) = -5/6$.

Найти общее решение дифференциального уравнения.

1.
$$y''' + 3y'' + 2y' = 1 - x^2$$
.

2.
$$y''' - y'' = 6x^2 + 3x$$
.

3.
$$y''' - y' = x^2 + x$$
.

4.
$$y^{IV} - 3y''' + 3y'' - y' = 2x$$
.

5.
$$y^{IV} - y''' = 5(x+2)^2$$
.

6.
$$y^{IV} - 2y''' + y'' = 2x(1-x)$$
.

7.
$$y^{IV} + 2y''' + y'' = x^2 + x - 1$$
.

.8.
$$y^V - y^{IV} = 2x + 3$$
.

9.
$$3y^{IV} + y''' = 6x - 1$$
.

10.
$$y^{IV} + 2y''' + y'' = 4x^2$$
.

11.
$$y''' + y'' = 5x^2 - 1$$
.

12.
$$y^{IV} + 4y''' + 4y'' = x - x^2$$
.

13.
$$7v''' - v'' = 12x$$
.

14.
$$v''' + 3v'' + 2v' = 3x^2 + 2x$$
.

15.
$$y''' - y' = 3x^2 - 2x + 1$$
.

Контрольная работа № 3

Задача 1.

- Литье в болванках поступает из двух заготовительных цехов: 70% из первого цеха и 30% - из второго. При этом материал первого цеха имеет 10% брака, а второго – 20%. Найдите вероятность того, что одна взятая наугад болванка не имеет дефектов.
- Рабочий обслуживает три станка, на которых обрабатываются однотипные детали. Вероятность брака для первого станка равна 0,02, для второго -0,03 и для Обработанные третьего 0,04.детали складываются один ящик.

Производительность первого станка в три раза больше, чем второго, а третьего - в два раза меньше, чем второго. Определите вероятность того, что взятая наудачу деталь будет бракованной.

- 3. На сборку попадают детали, изготовленные тремя автоматами. Известно, что первый автомат дает 0.3 % брака, второй -0.2 % и третий -0.4 %. Найти вероятность попадания на сборку бракованной детали, если с первого автомата поступило 1000, со второго -2000 и с третьего 2500 деталей.
- 4. Истребитель вооруженный двумя ракетами, идет на перехват цели. Он занимает положение, пригодное для атаки, с вероятностью p_1 . Из этого положения истребитель выпускает ракеты, Которые независимо друг от друга с вероятностью p_2 выходят в окрестность цели. Ракета, выведенная в окрестность цели, поражает цель с вероятностью p_3 . Какова вероятность того, что цель будет поражена?
- 5. По самолету производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором 0,6, при третьем 0,8. При одном попадании самолет будет сбит с вероятностью 0,3, при двух с вероятностью 0,6, при трех Самолет будет сбит наверняка. Какова вероятность того, что самолет будет сбит?
- 6. Три станка подают детали в общий бункер. Вероятность выпуска бракованной детали для первого станка равна 0,03, для второго 0,02 и для третьего 0,01. производительность первого станка в три раза больше производительности второго, а производительность третьего станка в два раза больше производительности второго. Какова вероятность того, что взятая наудачу из бункера деталь будет бракованной?
- 7. Вы забыли последнюю цифру номера телефона и набираете её наудачу. Определите вероятность того, что вам придется звонить не более чем в последние три места. Как изменится вероятность, если известно, что последняя цифра нечетная?
- 8. Из колоды карт 32 листа наудачу вынута карта. Какова вероятность того, что это туз, если известно, что вынута карта черной масти?
- 9. Часы изготовляются на трех разных заводах и поступают в магазин. Первый завод производит 40% продукции, второй 45% и третий 15%. В продукции первого завода спешат 80% часов, у второго 70% и у третьего 90%. Какова вероятность того, что купленные часы спешат?
- 10. При включении двигатель начинает работать с вероятностью p. а) Какова вероятность того, что двигатель начнет работать со второго включения? б) Какова вероятность того, что для запуска двигателя потребуется не более двух включений?
- 11. Вероятность появления события A в опыте равна 1/4. Опыт повторили 8 раз независимым образом. Найти вероятность того, что: а) событие A при этом появится не более двух раз; б) событие A при этом появится хотя бы два раза; в) событие A появится хотя бы один раз, но не более трех раз; Γ) событие A появится более четырех раз; д) Чему равно наиболее вероятное число появлений события A?

- 12. Из колоды (36 карт) вынимаются последовательно без возвращения две карты. Найти вероятность того, что первой картой была шестерка, а второй семерка. Найти условную вероятность того же события при условии, что обе карты бубновой масти.
- 13. Что вероятнее выиграть у равносильного противника в шахматы: три партии из четырёх или пять из восьми? Ничьи не учитываются.
- 14. На странице стандартного формата находится в среднем 2000 букв. В русском языке буква «о» встречается с частотой 0,1. Найдите вероятность того, что на стандартной странице буква «о» встретится ровно 200 раз.
- 15. В продажу поступила партия запасных деталей, произведенных на двух станках. Известно, что 70% продукции произведено на первом станке. Среди деталей, произведенных первым станком, 4% бракованных, среди деталей, произведенных вторым станком, 1% бракованных. Найти вероятность того, что купленная покупателем деталь оказалась бракованной. Задача 2.
- 1. Прибор, работающий в течение суток, состоит из трех узлов, каждый из которых, не зависимо от других, может за это время выйти из строя. Неисправность хотя бы одного узла приводит к отказу прибора в целом. Вероятность безотказной работы в течение суток первого узла равна 0,9, второго 0,95, третьего 0,85. Найти вероятность того, что в течение суток прибор будет работать безотказно.
- 2. На военных учениях летчик получил задание « уничтожить три рядом расположенных склада». На борту самолета три бомбы, по одной для каждой цели. Вероятность попадания в 1 склад 0,01, во 2-й 0,08, в 3-й 0,025. Любое попадание в результате детонации уничтожает все склады. Самолет сверхзвуковой, и летчик не знает, были ли удачными его первые попытки. Какова вероятность того, что склады будут уничтожены?
- 3. Аудитор обнаруживает финансовые нарушения с вероятностью 0,9. найти вероятность того, что среди 4-х фирм нарушителей будет выявлено больше половины.
- 4. Рабочий обслуживает два независимо работающих станка. Вероятность того, что станок потребует наладки в течение часа, равна 0,2. Найти вероятность того, что в течение семи часов будет один час, когда наладки потребуют оба станка.
- 5. Каждый из 900 посетителей оптового рынка случайным образом обращается в один из 10 ларьков. В каких границах с вероятностью 0,95 лежит число клиентов отдельно взятого ларька?
- 6. Шахматную секцию посещают 7 студентов 1 курса, 5студентов 2 курса и 6 студентов -3 курса. Какова вероятность того, в финальной игре на первенство вуза по шахматам противниками будут однокурсники?
- 7. Некоторое электронное устройство выходит из строя, если откажет определенная микросхема. Вероятность ее отказа в течение 1 ч работы устройства равна 0,004. Какова вероятность того, что за 100 ч работы устройства придется пять раз менять микросхему?

- 8. Комплекты деталей изготовляют опытный мастер и ученик. Опытный мастер допускает брак в пяти случаях из 100, а ученик портит каждую пятую деталь. В комплект входят две детали. Какова вероятность того, что : 1) выбранный комплект оказался бракованным; 2) выбранный комплект сделан мастером при условии, что он бракованный?
- 9. Какова вероятность выиграть по двум билетам, если приобретено 10 билетов и известно, что среди них 50% выигрышных?
- 10. Вероятность того, что сошедшая с конвейера деталь стандартная, равна 0,9. Найти вероятность того, что из 400 сошедших с конвейера деталей 356 окажутся стандартными.
- 11. В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказа первого, второго и третьего элементов соответственно равны 0,1; 0,15; 0,2. Найдите вероятность того, что тока в цепи не будет.
- 12. В урне три белых и два чёрных шара. Первый человек извлекает из неё три шара. Он возвращает обратно белый шар, если среди вынутых их было больше, и чёрный шар, если было больше их. После этого второй человек вынимает из урны один шар. Найдите вероятность того, что этот шар белый.
- 13. В сельском классе восемь детей. Считая рождения мальчика и девочки равновозможными, найдите вероятность того, что девочек в классе больше.
- 14. Вероятность того, что какой-либо абонент позвонит на коммутатор в течение минуты, равна 0,002. АТС обслуживает 2000 абонентов. Найдите вероятность того, что в течение данной минуты позвонят не более четырёх человек.
- 15. Вероятность того, что лампа перегорит после 1000 работы, равна 0,8. Найти вероятность того, что : а) три из пяти будут продолжать гореть, проработав 1000ч, б) из пяти ламп не менее трех будут гореть. Задача 3.
- 1. Фиксируется отклонение скорости самолета (в м/с) от нормативной. Данные по 100 полетам приведены в таблице.

1,8	-7,3	11,4	5,4	4,3	0,1	7,5	-16,3	7,9	13,6
3,1	-0,6	13,8	7,3	10,4	2,5	17,7	-1,6	-10,6	2,9
11,9	20,9	-7,1	-2,4	14,3	5,6	-4,3	15,4	18,7	9,2
40,2	-2,3	13,9	-7	10,7	16,5	2,7	-3,9	-13,5	3,8
8,2	17,3	-1,5	0,1	34,5	3	-0,7	-6,1	24,7	2,6
10,9	15,5	3,1	4	13,8	-0,1	-2,1	-0,1	-4,3	-11,3
12,7	8,6	5,8	10,7	14,7	4,9	-23,3	-0,5	12,1	3,8
3,7	9,2	2,5	-0,1	15,3	13,7	7,5	19,1	7	-6,4
1,6	18,7	12,9	8,9	-0,1	14,8	-0,8	5,5	-15,5	-8,3
12,6	-3,7	6,5	23,1	6,8	-5,96	9,5	18,8	-2,4	-8,9

1. Требуется:

- а) Построить статистический ряд, гистограмму и статистическую функцию распределения отклонения скорости. Найти точечные оценки M(x), D(x), S(x), $S^2(x)$.
- 2. Найти доверительные интервалы для M(x) и S(x) по малой выборке (для 1-ого столбца).
- 3. Найти доверительные интервалы для M(x) и S(x) с доверительной вероятностью 0,95.
- 2. В ходе полетов фиксировались интервалы времени между запросами на посадку. В таблице приведены 100 результатов регистрации (в минутах).

2,7	5,1	10,7	2,1	2,0	4,6	3,5	2,7	0,8	2,4
1,6	11,8	0,3	0,3	0,0	5,4	8,5	3,0	3,9	4,3
1,5	5,9	0,3	14,2	7,1	1,0	8,2	7,1	6,4	6,8
1,7	2,9	4,2	28,5	0,3	1,8	18,5	4,2	2,5	0,3
8,8	2,2	3,2	0,8	2,5	0,3	2,9	17,0	24,2	2,2
3,1	7,9	11,8	0,2	10,1	5,6	3,1	3,8	1,3	1,6
4,2	31,6	0,1	3,2	5,2	10,2	0,7	6,3	2,4	6,8
6,6	2,9	1,8	0,4	2,1	9,8	11,2	9,1	2,6	0,9
14,1	0,7	5,8	13,2	2,1	2,0	2,8	0,0	0,5	2,7
2,7	11,8	0,3	28,5	2,5	5,6	0,7	4,2	7,1	8,5

1. Требуется:

- а) Построить статистический ряд, гистограмму и статистическую функцию распределения. Найти \tilde{m}_x , \tilde{D}_x , S_x^2 , $\tilde{\sigma}_x$, S_x .
- б) Сгладить гистограмму подходящим законом.
- 3. Найти доверительный интервал для $m_{_{x}}$ и $\sigma_{_{x}}$ по малой выборке. І столбца.

3. Точки прицеливания.

<i>J</i> . 1	5. Точки прицеливания.								
-1,8	7,3	-11,4	-5,3	-4,3	-0,1	-7,5	16,3	-7,9	-13,6
-3,1	0,6	-13,8	-7,3	-10,4	-2,5	-17,7	1,6	10,6	-2,9
-11,9	-20,9	7,1	2,4	-14,3	-5,6	4,3	-1,4	18,7	-9,2
-40,2	2,3	-13,9	7,0	-10,7	-16,5	-2,7	3,9	13,5	-3,8
-8,2	-17,3	1,5	-0,1	-34,5	-3,0	0,7	6,1	-24,7	-2,6
-10,9	-15,6	-3,1	-4,0	-13,8	0,1	2,1	0,15	4,3	11,3
-12,7	-8,6	-5,8	-10,7	-14,7	-4,9	23,3	0,5	-12,1	-3,8
-3,7	-9,2	-2,5	0,1	-15,3	-13,7	-7,5	-19,1	-7,0	6,4
-1,6	-18,7	-12,9	-8,9	0,1	-14,8	0,8	-5,5	15,5	8,3
-12,6	3,7	-6,5	-23,1	-6,8	5,98	-9,5	18,8	2,4	8,9

1. Необходимо:

- а) Построить статистический ряд, гистограмму и статистическую функцию ошибки попадания. Найти \tilde{m}_x , \tilde{D}_x , $\tilde{\sigma}_x$, S_x^2 , S_x .
- б) Подобрать подходящий закон распределения ошибки; плотность вероятности построить вместе с гистограммой, функцию распределения вместе со статистической функцией распределения.
- 2. Найти доверительные интервалы для $m_x, D_x, p = 0.95$.
- 3. Найти доверительные интервалы для m_x , D_x по малой выборке, ограничиваясь первым столбцом.
- 4. Измерено направление в 100 пневматиках. В таблице приведены отклонения от номинального (в $10^3~\Pi a$)

-9,6	-0,2	13,0	12,7	-6,3	-21,8	15,0	-5,9	-29,6	-4,4
-5,6	8,7	8,8	-8,7	20,3	-3,5	-16,8	11,8	0,31	-18,6
-19,8	5,1	-11,6	6,1	-1,5	-16,8	6,4	1,6	1,3	-5,2
-15,2	5,0	0,7	-7,9	-0,3	3,9	-8,6	0,21	-17,8	-5,1
-14,0	12,8	-6,9	8,3	0,1	-2,4	-7,0	-17,8	0,25	-17,4
-16,8	4,0	-6,6	-2,2	5,6	-1,4	-7,7	-3,6	-5,0	8,8
10,0	8,4	-27,7	-6,6	-0,2	-23,3	-11,0	3,8	-3,4	4,6
1,9	-7,8	6,3	-17,5	-7,3	15,6	15,8	-3,0	-8,8	-12,2
-4,4	0,33	1,4	-8,2	-2,1	5,2	-6,3	6,2	0,31	20,1
-9,0	8,3	-11,1	-7,0	0,3	-1,2	-16,8	-4,0	-7,8	-23,1

- 1. Необходимо:
- а) Построить статистический ряд, гистограмму и статистическую функцию распределения. Найти \tilde{m}_x , \tilde{D}_x , S_x^2 , $\tilde{\sigma}_x$, S_x .
- б) Сгладить гистограмму подходящим законом.
- 2. Найти доверительные интервалы для m_x и σ_x с доверительной вероятностью 0,95.
- 3. Найти доверительный интервал для $\textit{m}_{_{\! x}}$ и $\sigma_{_{\! x}}$ по малой выборке. І столбца.