Министерство науки и высшего образования Российской Федерации Чайковский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Пермский национальный исследовательский политехнический университет»

Кафедра экономики, управления и предпринимательства

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Строительные материалы»

Приложение к рабочей программе дисциплины

Направление подготовки: 08.03.01 Строительство

Направленность (профиль) Промыц

образовательной программы:

Промышленное и гражданское строительство

Квалификация выпускника: «бакалавр»

Выпускающая кафедра: Кафедра экономики, управления и

предпринимательства

Форма обучения: очная

Курс: 2 Семестр: 3

Трудоёмкость:

Кредитов по рабочему учебному плану: 4 ЗЕ Часов по рабочему учебному плану: 144 ч.

Форма промежуточной аттестации:

Диф. зачет: 3 семестр.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение 3 семестра учебного плана и разбито на 3 учебных разделов. В разделах предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и диф. зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля								
Контролируемые результаты обучения по дисциплине (ЗУВы)	Теку	и ий	Рубеж	кный	Итоговый				
дисциплине (33 ды)	C	то	ОЛР / РГР	Т/КР	Диф.Зачёт (3 семестр)				
Усвоенные зна									
Знать теоретические основы и нормативную базу				T	КЗ				
строительства и строительной индустрии;									
нормативную базу в области инженерных систем и									
сетей теплогазоснабжения, вентиляции и									
водоснабжения, водоотведения объектов									
строительства.									
Знать основные сведения об объектах и процессах			ОЛР1	T	КЗ				
профессиональной деятельности посредством									
использования профессиональной терминологии.									
Знать методы или методики решения задач				T	К3				
профессиональной деятельности.									
Освоенные умения									
Уметь производить расчеты основных элементов			ОЛР2	T	КЗ				
инженерных систем и сетей теплогазоснабжения,									
вентиляции и водоснабжения, водоотведения									

объектов строительства.			
Уметь применять методы оценки эффективности	ОЛ	P3 T	КЗ
работы систем теплогазоснабжения и вентиляции и			
их отдельных элементов, а также методы подбора			
оборудования этих систем.			
Уметь выбирать строительные материалы для	ОЛ	P4 T	КЗ
строительных конструкций и изделий.			
Приобретенные в.	19114114		
		D.	TCD
Владеть навыками определения качества	ОЛ	P5 T	К3
строительных материалов на основе			
экспериментальных исследований их свойств.			
Владеть методами навыками принятия решений в	ОЛ	P6 T	К3
профессиональной сфере, используя теоретические			
основы и нормативную базу строительства,			
строительной индустрии и жилищно-			
коммунального хозяйства.			

С — собеседование по теме; ТО — коллоквиум (теоретический опрос); КЗ — кейс-задача (индивидуальное задание); ОЛР — отчет по лабораторной работе; Т/КР — рубежное тестирование (контрольная работа); ТВ — теоретический вопрос; ПЗ — практическое задание; КЗ — комплексное задание дифференцированного зачета.

Итоговой оценкой достижения результатов обучения по дисциплине является диф. зачет (3 семестр), проводимый с учётом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования - программам бакалавриата предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных заданий), защиты отчетов по лабораторным работам и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения раздела дисциплины, а промежуточный - во время каждого контрольного мероприятия внутри разделов дисциплины; - межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы; - контроль остаточных знаний.

2.1. Текущий контроль

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ и рубежных контрольных работ (после изучения каждого раздела учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 6 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланированы рубежные контрольные работы (КР) после освоения студентами учебных разделов дисциплины.

2.2.3. Защита лабораторных работ

Согласно РПД, запланировано 6 лабораторных работ. Темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

Типовые задания в ОЛР 1:

Темы 1.1, 1.2 Цели и задачи дисциплины. Строение и состав строительных материалов. Классификация материалов, применяемых в строительстве.

1. Определение средней и истиной и насыпной плотности строительных материалов. Имитационное выполнение лабораторных работ с помощью виртуального лабораторного комплекса «Строительное материаловедение» https://www.sunspire.ru/products/construction-materials/

Типовые задания в ОЛР 2:

Тема 2.2 Неорганические воздушные вяжущие вещества.

2. Определение нормальной густоты и сроков схватывания гипса. Имитационное выполнение лабораторных работ с помощью виртуального лабораторного комплекса «Строительное материаловедение» https://www.sunspire.ru/products/construction-materials/

Типовые задания в ОЛР 6:

Тема 2.4. Бетон и железобетон.

1. Определение удобоукладываемости бетонной смеси; определение предела прочности бетона при изгибе и сжатии. Имитационное выполнение лабораторных работ с помощью виртуального лабораторного комплекса «Строительное материаловедение» https://www.sunspire.ru/products/construction-materials/

2.3. Выполнение комплексного индивидуального задания на самостоятельную работу

Для оценивания навыков и опыта деятельности (владения), как результата обучения по дисциплине, не имеющей курсового проекта или работы, используется индивидуальное комплексное задание студенту.

Типовые шкала и критерии оценки результатов защиты индивидуального комплексного задания приведены в общей части ФОС образовательной программы.

2.4. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ, тестов и положительная интегральная оценка по результатам текущего и рубежного контроля.

2.4.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме дифференцированного зачета. Дифференцированный зачет по дисциплине основывается на результатах выполнения предыдущих индивидуальных заданий студента по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде дифференцированного зачета приведены в общей части ФОС образовательной программы.

2.4.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по тестам (Т) и комплексным заданиям (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Задание формируется таким образом, чтобы в него попали вопросы и комплексные задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.4.2.1. Типовые вопросы и задания для зачета по дисциплине

Типовые тестовые задания для контроля усвоенных знаний:

Темы 1.1, 1.2 Цели и задачи дисциплины. Строение и состав строительных материалов. Классификация материалов, применяемых в строительстве. Основные свойства строительных материалов.

- 1. Какие вещества входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку?
 - а) Кристаллические
 - б) Молекулярные кристаллические
 - в) Силикаты
- 2. Какого типа макроструктуры не существует?
 - а) Неслоистая
 - б) Рыхлозернистые материалы
 - в) Волокнистая
- 3. Какой из перечисленных физико-химических методов анализа используется для исследования строения и состава строения и состава путем экспериментального изучения дифракции рентгеновских лучей в этом веществе?
 - а) Рентгенный
 - б) Рентгенографический
 - в) Спектральный
- 4. Мера измерения влажности
 - a) %
 - б) литр
 - в) литр/метр
- 5.Метод определения пористости, основанный на замещении порового пространства в материале сжиженным гелием или другой среды
 - а) экспериментально расчётный
 - б) экспериментальный (прямой)
 - в) расчётный

- 6. Одна из возможностей применения платформы Arduino как связующее звено при автоматизации измерений физических величин заключается в:
- а) интеграция датчиков физических величин с различными установками анализа материалов;
 - б) 3D сканирование;
 - в) дистанционное управление процессом исследования материалов.
- 7. Масса единицы объёма абсолютно плотного материала (без пор и пустот)
 - а) истинная плотность
 - б) средняя плотность
 - в) насыпная плотность
- 8. Способность материала сопротивляться проникновению в него другого более твёрдого тела
 - а) пластичность
 - б) прочность
 - в) твёрдость
- 9. Какого типа макроструктуры не существует?
 - а) Мелкопористая
 - б) Теплоизоляционная
 - в) Искусственные конгломераты
- 10. Какой из перечисленных физико-химических методов анализа используется для определения минерально-фазового состава строительных материалов?
 - а) Спектральный
 - б) Петрографический
 - в) Дифференциально-термический

Тема 2.2 Неорганические воздушные вяжущие вещества.

- 1. Как называется известь, температура гашения которой менее 70 градусов по Цельсию?
 - а) среднегасящаяся известь
 - б) высокогасящаяся известь
 - в) низкогасящаяся известь
- 2. Какое вещество служит основным компонентом воздушной извести?
 - a) CaO
 - б) MgCO₃
 - в) MgO
- 3.В зависимости от содержания MgO известь делят на ...
 - а) кальциевая, магнезиальная, керамзитовая
 - б) магнезиальная, керамзитовая, гашеная
 - в) доломитовая, магнезиальная, кальциевая
- 4. Гашение извести сопровождается разогревом массы вследствие выделения значительного количества тепла. Какое количество теплоты выделяется?
 - а) 950 кДж/кг
 - б) 1160 кДж/кг
 - в) 1570 кДж/кг

- 5. Какое вещество вводят для ускорения твердения растворных и бетонных смесей на молотой негашеной извести?
 - a) H_2SO_4
 - б) HCl
 - в) KCl
- 6. Как называется прибор, который определяет нормальную густоту гипсового теста?
 - а) вращающаяся печь.
 - б) вискозиметр Суттарда.
 - в) Вика.
- 7. Чему равен расплыв лепешки гипсового теста при нормальной густоте?
 - a) 100±5;
 - б) 52±5;
 - в) 180±5.
- 8. Торговая марка аппаратно-программных средств для построения и прототипирования простых систем, моделей и экспериментов в области электроники, автоматики, автоматизации процессов и робототехники:
 - a) Leonardo
 - б) Arduino
 - в) Micro
- 9. Программа для количественного и качественного анализа методом волнодисперсионного (ВД) микроанализа:
 - a) Date
 - б) Inca Wave
 - в) Shot
- 10. Новая программная оболочка для электронно-зондового микроанализа на базе OC Windows 7 (64 бит)
 - а) АЦТЕК
 - б) ТРЕК
 - в) НАНО

Тема 2.4 Бетон и железобетон.

- 1. Свойство бетонной смеси разжижаться при механических воздействия и вновь загустевать в спокойном состоянии
 - а) Тиксотропия
 - б) Подвижность
 - в) Связность
- 2. Числовая характеристика какого-либо свойства бетона, принимаемая с гарантированной обеспеченностью 0,95
 - а) Марка
 - б) Класс
 - в) Тип
- 3. Какой должен быть бетонная смесь для использования ее при 3D печати?
 - а) Непластичной, усадочной
 - б) В меру пластичной, быстросхватывающейся, безусадочной

- в) Твердеющей в тепляках
- 4. Какой марки цемент рекомендуется использовать при 3D печати ответственных конструкций?
 - a) M600-M700
 - б) M300
 - в) M400D0
- 5. Добавка, обеспечивающая повышение прочности бетонной смеси для 3D печати и армирующая ее:
 - а) Диатомитовые шарики
 - б) Полипропиленовая микрофибра
 - в) Каолин
- 6. В дисперсно-армированном бетоне (фибробетоне) волокна препятствуют развитию усадочных трещин, их (волокон) наличие повышает прочность сцепления стержневой арматуры с бетоном примерно на:
 - a) 20%
 - б) 30%
 - в) 40%
- 7. Способность бетонной смеси заполнять форму при данном способе уплотнения, сохраняя свою однородность
 - а) подвижность
 - б) удобоукладываемость
 - в) тиксотропия
- 8. Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся
 - а) уменьшить усадку бетона
 - б) увеличить усадку бетона
 - в) уменьшить набухание бетона
- 9. При изготовлении тяжёлых бетонов нельзя использовать воду, имеющую показатель pH
 - а) меньше 4
 - б) больше 4
 - в) можно использовать любую воду
- 10. Если плотность бетона больше $500-1800 \text{ кг/м}^3$, то его относят к следующему виду:
 - а) особо лёгким бетонам
 - б) лёгким бетонам
 - в) тяжёлым бетонам

Типовые теоретические вопросы для контроля усвоения знаний:

- Тема 1.1, 1.2 Цели и задачи дисциплины. Строение и состав строительных материалов. Классификация материалов, применяемых в строительстве.
- 1. Классификация строительных материалов.

- 2. Макро и микроструктура строительных материалов, состав и свойства строительных материалов.
- 3. Физико-химические методы оценки состава и структуры материалов. Основные физические свойства строительных материалов.
- 4. Свойства строительных материалов по отношению к воде (гидрофизические свойства).
- 5. Теплофизические свойства строительных материалов.
- 6. Механические и специальные свойства строительных материалов.

Тема 2.2 Неорганические воздушные вяжущие вещества.

- 1. Классификация минеральных вяжущих веществ.
- 2. Воздушная известь: сырье, производство, виды, применение.
- 3. Гипс строительный: сырье, производство, виды, свойства, применение.
- 4. Магнезиальные вяжущие вещества, жидкое стекло. Свойства и область применения.

Тема 2.4 Бетон и железобетон.

- 1. Определение и классификация бетонов по виду вяжущего, по плотности по применению.
- 2. Тяжелый бетон. Основные требования, предъявляемые к активным и инертным компонентам бетона.
- 3. Приготовление бетонной смеси и ее свойства.
- 4. Основные свойства тяжелого бетона: плотность, прочность, пористость, морозостойкость и др.
- 5. Особенности состава и свойств отдельных разновидностей тяжелого бетона (защитный, дорожный, гидротехнический, жаростойкий, кислотоупорный, декоративный).
- 6. Легкие бетоны на пористых заполнителях (поризованные, крупнопористые). Виды природных и искусственных заполнителей. Классификация легких бетонов и область их применения.
- 7. Ячеистые бетоны (пенобетон, газобетон). Понятие о способах приготовления. Особенности свойств, применение.

Типовые комплексные задания для контроля приобретенных умений:

- 1. Масса образца камня в сухом состоянии равна 50 г. Определить массу образца после насыщения его водой, а также его истинную плотность, если известно, что водопоглощение образца по объёму равно 18 %, а пористость 25% и средняя плотность $1800\ {\rm Kr/m}^3$.
- 2. Определить пористость образца камня, если известно, что его водопоглощение по объёму в 1,7 раза больше водопоглощения по массе, а истинная плотность равна $2,6 \, \text{г/cm}^3$.

- 3. Предел прочности при сжатии бетона, имеющего среднюю плотность 2300 кг/м 3 , равен 19,5 МПа. Какую прочность будет иметь бетон из тех же материалов, имеющий плотность 1800 кг/м 3 , если установлено, что при повышении пористости бетона на каждые 10 % прочность его снижается в среднем на 2,6 МПа. Истинную плотность бетона принять равной 2,7 г/см 3 .
- 4. Сосновый брус сечением 10×20 см (толщина × высота) лежит на двух опорах, отстоящих друг от друга на 4 м. Посередине бруса к нему была приложена максимальная нагрузка 2,1 т, которая вызвала излом бруса. Рассчитать предел прочности бруса при изгибе.
- 5. Определить коэффициент размягчения камня, если при испытании образца в сухом состоянии на сжатие максимальное показание манометра пресса было равно 38,8 МПа, тогда как такой же образец в водонасыщенном состоянии показал предел прочности при сжатии 20,1 МПа. Образец имел форму куба с ребром 7 см. Площадь поршня пресса равна 50 см².
- 6. Керамзитобетонная наружная стеновая панель размерами $3,1\times2,8\times0,25$ м весит 2,25 т при влажности 13,2 %. Рассчитать среднюю плотность керамзитобетона во влажном и абсолютно сухом состоянии.
- 7. Бетонный кубик с размером ребра 20 см разрушился на гидравлическом прессе при показании манометра 12,5 МПа. Определить прочность бетона при сжатии, если диаметр поршня пресса равен 24 см.
- 8. Кубик из газобетона с размером ребра 20 см погружён в воду. В первый момент, когда поглощением воды можно пренебречь, кубик плавает в воде, и высота его над уровнем воды составляет 6,5 см. Определить пористость газобетона, принимая его истинную плотность равной 2,79 г/см³.
- 9. Пикнометр с навеской вяжущего вещества весил 34,30 г, а пустой -24,10 г. Когда в пикнометр с навеской влили керосин до метки, то вес его стал равен 74,17 г, а вес пикнометра с керосином (без навески) был равен 66,60 г. Рассчитать истинную плотность вяжущего вещества, если вес пикнометра с водой (без навески) равен 74,20 г.
- 10. С помощью онлайн-калькуляторов https://rukamen.ru/concreteCalculate/ https://rukamen.ru/concreteCalculate/ <a href="https://rukamen.ru/c

Исходные данные для расчета приведены в таблице, согласно выданного преподавателем варианта.

			Цемент		Песок			Щебень (гравий*)				eg	m.	Влаж-		0	
	етона	c _M	3·),	<u>_</u>	~ .	r	~_			,	á		замесе та ′о	DCTb KF/M ³	ност	ъ, %	#E. II
№ варианта	Класс (марка) бе	Подвижность, с (жесткость, с)	Активность (марка·), МПа	Истин. плотн., кг/дм³	Нас. плотн., кг/дм³	Истинная плотн. кг/дм ³	Нас. плотн. кт/дм³	Водопотр., %	НК, мм	Истин. плотность, кг/дм³	Насып. плотность, кг/дм³	Пустотность, %	Увелич. в пробн. за воды и цемента (заполн.*), %	Фактич. плотность бетонной смеси, кг/м	песка	шебня (гравия)	Емк. бетоносмесит. по загрузке, дм ³
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	B15	20 c	45,4	3,05	1.15	2.66	1.49	8	70	2.66	1.48	39.5	5*	2350	3	4	750
2	M200	25 c	400*	3.15	1,22	2,63	1,45	7	40*	2,59*	1.44*	41,4*	15	2420	2	3	1200
3	M150	2 см	300*	2.95	1,09	2.65	1.56	4	20	2,68	1.45	42.8	10	2400	5	4	500
4	B 10	5 c	38,5	3.08	1.10	2.58	1.64	5	40	2,72	1.46	40.6	15*	2340	3	3	750
5	B 20	35 c	48.0	3.18	1.18	2.66	1.58	6	70*	2,60*	1.43*	39,3*	5	2380	2	2	1500
6	B 25	40 c	400*	3.10	1.09	2.64	1.63	7	20*	2,64*	1.44*	44.4*	10*	2450	4	2	1000
7	M250	25 c	46.5	3,17	1,14	2,62	1.60	5	10	2,73	1.49	43.7	10	2430	5	4	2000
8	B 12,5	10 c	38,5	3.04	1.16	2,63	1,57	4	40	2.65	1,45	38,4	5*	2410	3	2	1200
9	M200	15 c	42.6	3.11	1.08	2.57	1.64	8	70*	2,68*	1.47*	39.2*	15	2370	4	3	500
10	M100	4 см	300*	2.98	1.07	2.61	1.64	6	20	2,70	1.46	40.5	20	2380	2	2	1500

2.4.2.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета / диф. зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и дисциплинарных компетенций

3.1. Оценка уровня сформированности компонентов дисциплинарных компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в вопросе компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Перечень теоретических вопросов для дифференцированного зачета по дисциплине «Строительные материалы».

- 1. Классификация строительных материалов.
- 2. Основные физические свойства строительных материалов.
- 3. Макро и микроструктура строительных материалов; состав и свойства строительных материалов.
- 4. Физико-химические методы оценки состава и структуры материалов.
- 5. Свойства строительных материалов по отношению к воде (гидрофизические свойства). Теплофизические свойства строительных материалов.
- 6. Механические и специальные свойства строительных материалов.
- 7. Глина, ее виды и свойства.
- 8. Стеновые керамические материалы, их виды и свойства.
- 9. Отделочные керамические материалы, их виды и свойства.
- 10. Технология изготовления керамических изделий.
- 11. Классификация минеральных вяжущих веществ.
- 12. Воздушная известь: сырье, производство, виды, применение.
- 13. Гипс строительный: сырье, производство, виды, свойства, применение.
- 14. Магнезиальные вяжущие вещества, жидкое стекло. Свойства и область применения.
- 15.Портландцемент и его производство. Что такое клинкер портландцемента? Минералогический и химический состав клинкера и его влияние на свойства портландцемента.
- 16. Реакции твердения портландцемента. Коррозия портландцемента, методы защиты от коррозии.
- 17. Основные свойства портландцемента: тонкость помола, сроки схватывания, марка, активность. Способы их определения.
- 18. Разновидности портландцемента, их особенности и область применения в строительстве.
- 19. Строительные растворы, их классификация и свойства.
- 20. Силикатные и гипсовые материалы, изделия и конструкции из них.
- 21. Битумные и дегтевые вяжущие вещества, их классификация, свойства, применение. Асфальтовые бетоны.
- 22. Кровельные и гидроизоляционные материалы на основе битумов и дегтей (рулонные, мастики, эмульсии, пасты): разновидности, состав, свойства, применение.
- 23. Определение и классификация бетонов по виду вяжущего, по плотности и по применению.
- 24. Тяжелый бетон. Основные требования, предъявляемые к активным и инертным компонентам бетона.
- 25. Приготовление бетонной смеси и ее свойства.
- 26.Основные свойства тяжелого бетона: плотность, прочность, пористость, морозостойкость и др.

- 27.Особенности состава и свойств отдельных разновидностей тяжелого бетона (защитный, дорожный, гидротехнический, жаростойкий, кислотоупорный, декоративный).
- 28. Легкие бетоны на пористых заполнителях (поризованные, крупнопористые). Виды природных и искусственных заполнителей. Классификация легких бетонов и область их применения.
- 29. Ячеистые бетоны (пенобетон, газобетон). Понятие о способах приготовления. Особенности свойств, применение.
- 30.Понятие о железобетоне, роль арматуры. Свойства бетона и стали, обуславливающие их совместную работу. Достоинства железобетона.
- 31.Сущность предварительно-напряженного железобетона. Его достоинства по сравнению с обычным железобетоном.
- 32.Понятия о технологических схемах приготовления железобетонных изделий. Производство железобетонных изделий поточным методом.
- 33.Понятие о металлах и сплавах как о важнейших строительных материалах. Краткая классификация металлов и сплавов, применяемых в строительстве.
- 34. Чугун: производство, классификация, свойства и применение.
- 35. Строительные стали: производство, классификация.
- 36. Применение металла в строительстве. Сортамент прокатных изделий.
- 37. Виды и маркировка арматурной стали, особенности ее упрочнения.
- 38. Магматические, осадочные и метаморфические породы, их происхождение и свойства.
- 39.Получение, обработка, способы добычи природных каменных материалов и их защита от разрушения.
- 40. Макро- и микро структура древесины. Пороки древесины. Влияние строения, пороков, влажности древесины на ее свойства.
- 41. Виды строительных материалов из древесины, их получение.
- 42.Методы защиты древесины от гниения, возгорания и поражения древогрызущими насекомыми.
- 43. Теплоизоляционные материалы. Определение, классификация, основные свойства.
- 44.Виды неорганических теплоизоляционных материалов, их свойства, область применения.
- 45.Виды органических теплоизоляционных материалов, их свойства, область применения.