АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Микропроцессорные средства автоматизации в энергетике» направление подготовки 13.03.02 Электроэнергетика и электротехника очно-заочная форма обучения

Аннотация к рабочей программе дисциплины разработана в соответствии с рабочей программой дисциплины «Микропроцессорные средства автоматизации в энергетике», с учетом ФГОС ВО, самостоятельно устанавливаемым образовательным стандартом высшего образования по направлению подготовки 13.03.02 Электроэнергетика и электротехника, компетентностной моделью выпускника, учебным планом и является приложением к рабочей программе дисциплины.

Дисциплина «Микропроцессорные средства автоматизации в энергетике» относится к профильной части программы бакалавриата, модуль Электроснабжение.

1. Общие положения

1.1. Цель учебной дисциплины

Цель учебной дисциплины — освоение дисциплинарных компетенций по проектированию, модернизации, наладке и испытаниям микропроцессорных систем автоматизации производственных и технологических процессов в электроэнергетике.

Задачи учебной дисциплины:

- изучение возможностей микропроцессорных средств автоматизации при генерации, трансформации, передаче и потреблении электроэнергии;
- формирование умений формулировать технические задания, разрабатывать и использовать средства автоматизации при генерации, трансформации, передаче и потреблении электроэнергии;
- формирование навыков алгоритмического и программного обеспечения микропроцессорных средств для повышения энергоэффективности электроэнергетики; формирования навыков применения микропроцессорных средств в электроэнергетике.

1.2. Изучаемые объекты дисциплины:

Кол и наименование

- микропроцессорные средства управления в электроэнергетике;
- цифровые датчики тока, напряжения, качества электроэнергии;
- микропроцессорные приборы учета электроэнергии;
- структура и модули управления реклоузерами;
- модули цифровой электрической подстанции;
- оборудование для цифровой электрической подстанции.

2. Планируемые результаты обучения по дисциплине

В результате освоения дисциплины у обучающегося должны быть сформированы профессиональные компетенции

Код и наименование индикатора достижения компетенции

7.1	רי בי
компетенции	результаты обучения
ПК-2.3	ИД-1 пк-2.3
Способность принимать уча-	Знает состав, этапы, последовательность и особенности
стие в проектировании объек-	предпроектного обследования и проектирования объектов
тов профессиональной дея-	профессиональной деятельности в соответствии с техниче-
тельности в соответствии с	ским заданием и нормативно-технической документацией,
техническим заданием и нор-	соблюдая различные технические, энергоэффективные и
мативно-технической докумен-	экологические требования.
тацией, соблюдая различные	ИД-2 пк-2.3
технические, энерго-	Умеет применять основные подходы и методики, про-
эффективные и экологические	граммные и технические средства предпроектного обсле-
требования	дования и проектирования объектов профессиональной
	деятельности в соответствии с техническим заданием и
	нормативно-технической документацией, соблюдая раз-

личные технические, энергоэффективные и экологические требования.

ИД-3 пк-2.3

Владеет навыками использования основных программных и технических средств предпроектного обследования и проектирования объектов профессиональной деятельности в соответствии с техническим заданием и нормативнотехнической документацией, соблюдая различные технические, энергоэффективные и экологические требования.

3. Объем и виды учебной работы

		Распределение
		по семестрам
Вид учебной работы	Всего часов	в часах
		Номер
		семестра
		7
1. Проведение учебных занятий (включая проведение текуще-	34	34
го контроля успеваемости) в форме:		
1.1. Контактная аудиторная работа, из них:		
- лекции (Л)	12	12
- лабораторные работы (ЛР)	12	12
- практические занятия, семинары и (или) другие виды занятий		8
семинарского типа (ПЗ)		
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа	-	-
1.2. Самостоятельная работа студентов (СРС)	110	110
2. Промежуточная аттестация/контактная работа	36/8	36/8
Экзамен/контактная работа	36/8	36/8
Дифференцированный зачет	-	-
Зачет	-	-
Курсовой проект (КП)	-	-
Курсовая работа (КР)	_	-
Общая трудоемкость дисциплины	180	180

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		аудиторі 10 видам	Объем внеа- удиторных занятий по ви- дам в часах	
	Л	ЛР	П3	CPC
Микропроцессорные средства управления.	2	0	2	24
 Тема 1. Микропроцессорные средства управления в энергетике. Тема 2. Цифровые датчики тока, напряжения, качества электроэнергии. Тема 3. Микропроцессорные приборы учета электроэнергии. Тема 4. Структура и модули управления реклоузерами. 				
Базовые микропроцессорные средства автоматизации электроэнергетических объектов.	8	12	4	66

Тема 5 . Технические характеристики МК51. Обоб-				
щенная структурная схема микропроцессорной сис-				
теми управления.				
Тема 6. Архитектура МК51, организация памяти.				
Тема 7. Команды МК51.				
Тема 8. Система прерываний.				
Тема 8. Таймеры-счетчики.				
Тема 9. Практическое использование MK51.				
Реализация концепции Smart Grid.	2	0	2	20
Тема 10. Модули цифровой электрической подстан-				
ции. Оборудование для цифровой электрической				
подстанции.				

Тематика примерных практических занятий

No	Наименование темы практической работы	
п.п.		
1	Технические характеристики цифровых датчиков тока, напряжения, качества электроэнер-	
	гии, микропроцессорных приборов учета электроэнергии.	
2	Арифметико-логические операции МК51.	
3	Выбор оборудования и программного обеспечения цифровой электрической подстанции.	

Тематика примерных лабораторных работ

№	Наименование темы лабораторной работы
п.п.	
1	Организация памяти и команды передачи данных.
2	Циклическая пересылка данных из DSEG и CSEG в RAM.
3	Команды арифметических и логических операций.
4	Битовый процессор.
5	Система прерываний и таймеры/счетчики.

5. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся – активные участники занятия, отвечающие на вопросы преподавателя.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области; каждое практическое занятие проводится по своему алгоритму. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин для решения проблем; отработка навыков взаимодействия; закрепление основ теоретических знаний с позиций системного представления проблемы.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность студентов в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

Практические и лабораторные занятия проходят в форме решения поставленных задач исследовательским методом, анализа и решения ситуационных задач

6. Формы контроля:

Контроль качества освоения программы дисциплины «Микропроцессорные средства автоматизации в энергетике», включает в себя: текущий контроль успеваемости, рубежный контроль и итоговый контроль.

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и проводится в следующих формах:

- устный опрос для анализа усвоения материала предыдущей лекции;
- оценка работы студента на практических занятиях, лабораторных работах.

Рубежный контроль осуществляется по завершении раздела дисциплины, в соответствии с рабочей программой, проводится в следующих формах:

- защита лабораторных работ;
- выполнение индивидуальных заданий;

Итоговый контроль: 7 семестр – экзамен.

7. Учебно-методическая литература.

7.1. Основная литература:

- 1. Друзьякин, И.Г. Микропроцессорные средства автоматизации энергетических систем. Ч.1. Микропроцессорные счетчики электрической энергии: учебное пособие / И.Г. Друзьякин, А.Н. Лыков.— Пермь: Издательство Пермс. нац. исслед. ун-та,2011.—144с..
- 2. Калашников, В.И. Электроника и микропроцессорная техника: учебник / В.И. Калашников, С.В. Нефедов; под ред. проф. Г.Г. Раннева.—М.: Издательский центр « Академия», 2012.—368c
- 3. Сажнев. А.М. Цифровые устройства и микропроцессоры: учебное пособие / А.М. Сажнев. –2-е изд., перераб. и доп. М.: Изд-во Юрайт, 2018. –139с.

7.2. Дополнительная литература

- 1. Хартов, В.Я. Микропроцессорные системы: учебное пособие/ В.Я. Хартов. М.: Академия, 2010. 352с.
- 2. Паттерсон, Д.Архитектура компьютера и проектирование компьютерных систем / Д. Паттерсон, Дж. Хеннесси. 4-е изд.– СПб: Питер,2012.–784с
- 3. Таненбаум, Э. Архитектура компьютера / Э. Таненбаум, Т. Остин. 6-е изд. СПб: Питер, 2017. 816с