АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Физика»

направление подготовки 08.03.01 Строительство очная форма обучения

Аннотация к рабочей программе дисциплины разработана в соответствии с рабочей программой дисциплины «Физика», с учетом ФГОС ВО, самостоятельно устанавливаемым образовательным стандартом высшего образования по направлению подготовки 08.03.01 Строительство, компетентностной моделью выпускника, учебным планом и является приложением к рабочей программе дисциплины.

Дисциплина «Физика» относится к обязательной части программы бакалавриата, Блока 1 «Дисциплины (модули)» программы бакалавриата.

1. Обшие положения

1.1. Цели и залачи дисциплины

Цель дисциплины:

- изучить физические явления и законы физики, границы их применимости, применение законов в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические опыты и их роль в развитии науки; знать назначение и принципы действия важнейших физических приборов;
- приобрести навыки работы с приборами и оборудованием современной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем;
- уяснить логические связи между разделами курса физики, выработать представление о том, что физика является универсальной базой для технических наук, и что те физические явления и процессы, которые пока ограниченно применяются в технике, в будущем могут оказаться в центре новаторских достижений инженерной мысли.

В результате изучения дисциплины обучающийся должен (проектируемые результаты освоения дисциплины):

знать:

- основные физические явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности, области и возможности применения физических эффектов;
- фундаментальные понятия, законы и теории классической и современной физики, границы применимости основных физических моделей;
- основные физические величины и константы, их определения и единицы измерения;
- методы физического исследования, в том числе методы моделирования физических процессов;
- методы решения физических задач, важных для технических приложений;
- физические основы измерений, методы измерения физических величин;
- технологии работы с различными видами информации;
 уметь:
- выделять физическое содержание в системах и устройствах различной физической природы;
- осуществлять корректное математическое описание физических явлений в технологических процессах;

- строить и анализировать математические модели физических явлений и процессов при решении прикладных задач;
- решать типовые задачи по основным разделам физики, используя методы математического анализа и моделирования;
- применять понятия, физические законы и методы решения задач для выполнения технических расчетов, анализа и решения практических проблем, проведения исследований в профессиональной деятельности;
- применять современное физическое оборудование и приборы при решении практических задач, использовать основные приемы оценки погрешности и обработки данных эксперимента;

владеть:

- методами анализа физических явлений в технических устройствах и системах;
- навыками практического применения законов физики, в том числе при проектировании изделий и процессов;
- методами теоретического исследования физических явлений и процессов, построения математических и физических моделей реальных систем, решения физических задач;
- навыками использования основных физических приборов;
- методами экспериментального физического исследования (планирование, постановка и обработка данных эксперимента, в том числе с использованием пакетов стандартного программного обеспечения);

навыками применения знаний в области физики для изучения других дисциплин.

1.2. Изучаемые объекты дисциплины

- физические явления и процессы в природе и техногенных системах;
- физические законы, описывающие эти явления и процессы;
- приборы для исследования физических систем;
- методы исследования физических систем;

методы формализованного описания физических систем, в том числе средствами математического и компьютерного моделирования.

2. Планируемые результаты обучения по дисциплине

Планируемые результаты	Индикатор достижения	Средства оценки
обучения по дисциплине (знать,	компетенции, с которым	
уметь, владеть)	соотнесены планируемые	
	результаты обучения	
ОПК-1. Способен решать	ИД-1 _{ОПК-1}	Текущее и рубежное
задачи профессиональной	Знает:	тестирование
деятельности на основе	-классификацию физических и	Экзамен в форме
использования теоретических и	химических процессов,	вопросов и задач
практических основ	протекающих на объекте	Дифференцированный
естественных и технических	профессиональной	зачет в форме вопросов
наук, а также математического	деятельности;	
аппарата	- характеристики физического	
	процесса (явления),	
	характерного для объектов	
	профессиональной	
	деятельности на основе	
	теоретического и	
	экспериментального	

исследования;

- характеристики химического процесса (явления), характерного для объектов профессиональной деятельности, на основе экспериментальных исследований;
- базовые для профессиональной сферы физические процессы и явления в виде математического (их) уравнения (й);

ИД-2 _{ОПК-1} Умеет:

- выбирать базовые физические и химические законы для решения задач профессиональной деятельности;
- решать инженерные задачи с помощью математического аппарата векторной алгебры, аналитической геометрии и математического анализа;
- решать уравнения, описывающие основные физические процессы с применением методов линейной алгебры и математического анализа;
- решать инженерногеометрические задачи графическими способами.

ИД-3 опк-1

Владеет навыками:

- обработки расчетных и экспериментальных данных вероятностностатистическими методами. 3. Объем и виды учебной работы

Вид учебной работы		Распределение по семестрам в часах Номер семестра 2 3	
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме:	120	60	60
1.1. Контактная аудиторная работа, из них: - лекции (Л)	48	24	24
- лабораторные работы (ЛР)	36	18	18
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	32	16	16
- контроль самостоятельной работы (КСР)	4	2	2
- контрольная работа	-	-	-
1.2. Самостоятельная работа студентов (СРС)	168	84	84
2. Промежуточная аттестация/контактная работа	38/10	36/8	2/2
Экзамен/контактная работа	36/8	36/8	-
Дифференцированный зачет/контактная работа	2/2	ı	2/2
Зачет	-	-	-
Курсовой проект (КП)	-	-	-
Курсовая работа (КР)	-	-	-
Общая трудоемкость дисциплины	324	180	144

4. Содержание дисциплины

H		Объем		Объем
		иторні	ых	внеаудиторных
Наименование разделов дисциплины с кратким содержанием	занятий		I	занятий
	по видам в часах		ıacax	по видам в часах
	Л	ЛР	П3	CPC
2-й семестр				
Тема 1. Элементы кинематики	2	-	1	7
Тема 2. Динамика материальной точки	2	6	2	7
Тема 3. Работа. Энергия	2	-	1	7
Тема 4. Механика твердого тела	2	-	2	7
Тема 5. Тяготение. Элементы теории поля	2	-	1	7
Тема 6. Элементы механики жидкости	2	-	1	7
Тема 7. Элементы специальной теории	2	-	1	7
относительности				
Тема 8. Основы молекулярной физики	2	6	1	7
Тема 9. Основы термодинамики	2	6	2	7
Тема 10. Электростатика	2	-	1	7
Тема 11. Постоянный электрический ток	2	-	2	7
Тема 12. Электрические токи в металлах, вакууме, и	2	-	1	7
газах.				
ИТОГО по 2-му семестру	24	18	16	84
3-й семестр				
Тема 13. Магнитное поле	2	-	1	7

	(Объем		Объем
Наименование разделов дисциплины с кратким	ауд	иторні	ыX	внеаудиторных
содержанием	3	анятий		занятий
	по видам в часах		ıacax	по видам в часах
Тема 14. Электромагнитная индукция	2	-	2	7
Тема 15. Магнитное поле в веществе	2	-	1	7
Тема16. Основы теории Максвелла для	2	-	1	7
электромагнитного поля				
Тема 17. Механические колебания и волны	2	6	2	7
Тема 18. Упругие волны	2	6	2	7
Тема 19. Электромагнитные волны	2	-	1	7
Тема 20. Интерференция и дифракция	2	6	2	7
Тема 21. Квантовая природа излучения	2	-	1	7
Тема 22. Планетарная модель атома	2	-	1	7
Тема 23. Основы физики атомного ядра	2	-	1	7
Тема 24. Физическая картина мира	2	_	1	5
ИТОГО по 3-му семестру	24	18	16	82
ИТОГО по дисциплине	48	36	32	166

Тематика примерных практических занятий

I CIVIZ	1 ематика примерных практических занятии		
No	Наименование темы практического (семинарского) занятия		
п.п.	Transienobanne Tembi npaktn teckoro (ceminapekoro) sanntini		
1.	Кинематика		
2.	Динамика		
3.	Динамика вращательного движения		
4.	Работа. Энергия		
5.	Колебания и волны		
6.	Термодинамика		
7.	Электростатика		
8.	Электрический ток		
9.	Магнитостатика		
10.	Электромагнитная индукция		
11.	Электромагнитные колебания и волны		
12.	Интерференция		
13.	Дифракция света		
14.	Квантовые свойства электромагнитного излучения		
15.	Атомная и ядерная физика		
16.	Физическая картина мира		

Тематика примерных лабораторных работ

1 CHUI II KU II DII MCDII MOODU I ODIIDIA DUOOI			
№	Наименование темы лабораторной работы		
п.п.	Transcribbanne resident statoparophon patorible		
1	Задача внешней баллистики		
2	Гармонический осциллятор		
3	Газовые законы		
4	Магнитное поле контура с током		
5.	Электромагнитная волна		
6.	Дифракция света		

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

В процессе обучения;

- Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем; отработка у обучающихся навыков взаимодействия в составе коллектива; закрепление основ теоретических знаний.
- Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение пелей занятия

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации.

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, защите курсового проекта работы и на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Формы контроля:

Текущий контроль качества процесса обучения:

- устный опрос для анализа усвоения материала предыдущей лекции;
- оценка работы студента на практических занятиях.

Рубежный контроль:

- защита практических работ;
- рубежное тестирование;

Итоговый контроль – дифференцированный зачет, экзамен.

7. Учебно-методическая литература.

7.1. Основная литература

- 1. Бондарев, Б.В. Курс общей физики: в 3кн.: учебник для бакалавров / Б.В. Бондарев, Г.Г. Спирин.—2-е изд.—М.: Издательство Юрайт, 2013.
- 2. Трофимова, Т.И. Курс физики: учеб. пособие/ Т.И. Трофимова.—20-е изд., стер. М.:Академия,2014. 560с.
- 3. Толстенёва, А.А. Архитектурная физика: учебное пособие/ А.А. Тостенёва. Л.И. Кутепова, А.А. Абрамов. М.: Изд-во Юрайт,2018. –175с
- 4. Савельев И.В. Курс общей физики: учебник в 3-х т. Т.1 Механика. Молекулярная физика / И.В. Савельев. 12-е изд., стер. СПб: Изд-во « Лань», 2016. 432с.

7.2. Дополнительная литература

1. Трофимова, Т.И. Руководство к решению задач по физике: учебное пособие для бакалавров / Т.И.Трофимова.—2-е изд., перераб. и допол.—М.: Издательство Юрайт,2013.—265с.

- 2. Аполлонский, С.М. Дифференциальные уравнения математической физики в электротехнике /С.М. Аполлонский.— СПб: Питер, 2012.—352с.
- 3. Благовещенский, В.В. Компьютерные лабораторные работы по физике, химии, биологии: учебное пособие / В.В. Благовещенский. СПб.: Изд
- 4. Благовещенский, В.В.Компьютерные лабораторные работы по физике в пакете MathCad: учебное пособие / В.В. Благовещенский. СПб.: Изд